IA712: Mobile Robotics

Lecture 1: Introduction

Zhi Yan

ENSTA - Institut Polytechnique de Paris

Syllabus

Goal of this course:

- Provide an overview of problems and approaches in mobile robotics.
- ► Hands-on experience (with ROS2).

Syllabus

Course schedule:

- ▶ Weeks 1-3: Foundations. ROS 2 setup, software architecture, and system integration.
- Weeks 4-6: Robot Motion & Perception. Locomotion, Kinematics (URDF, tf2), and Sensors.
- Weeks 7-8: Core Autonomy. Simultaneous Localization and Mapping (SLAM) and Exploration strategies.
- ► Weeks 9-11: Navigation & Advanced Topics. Path Planning, Navigation Stack (Nav2), and Multi-Robot Systems.
- ▶ Weeks 12-18: Exam & Final Project.

References

Textbooks:

- ▶ David FILLIAT. Robotique Mobile. ENSTA.
- ▶ Roland Siegwart, Illah Reza Nourbakhsh, and Davide Scaramuzza. Introduction to Autonomous Mobile Robots. MIT Press.

Extended reading:

- Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics. MIT Press.
- Howie Choset, Kevin M. Lynch, Seth Hutchinson, George A. Kantor, Wolfram Burgard, Lydia E. Kavraki, and Sebastian Thrun. Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press.

Grading

- ► Project: 40%
- Exam (written or programming, January 27, 2026): 30%
- ► Practical work: 30%

Mobile Robotics Today

Represented by YouTube celebrity Boston Dynamics:

What Is a Robot?

Origin of Words

- ▶ The word **robot** was first used in 1921 by Czech author Karel Capek in his science fiction play R.U.R. (Rossum's Universal Robots).
- ▶ It comes from the Czech word "robota", which means "forced labor".

Figure: A scene from the play, showing three robots.

What Is a Robot?

According to the Oxford Dictionary: A robot is a machine that can perform a complicated series of tasks by itself.

- Definition reflecting to people's expectations for robot autonomy.
- Existing robots have a wider range of manifestations: fully autonomous, semi-autonomous, remote controlled, etc.
- ► The impact on the labor market: a supplement while at the same time generating competition.
- ▶ The ethical issues: compliant human ethics, military use, etc.

A Brief History of Robotics

- ► Ancient Times: Concepts of automatons and mechanical servants appear in myths and early engineering.
- ▶ **1954:** George Devol patents the "Unimate," the first industrial robot arm.
- ▶ 1966: "Shakey" the robot is developed at Stanford (first mobile robot to reason about its own actions).
- ▶ 1990s: Rise of behavior-based robotics (Genghis from MIT).
- ▶ 1997: Sojourner rover successfully explores Mars.
- ▶ 2000s: DARPA Grand Challenge accelerates autonomous vehicle research. Roomba popularizes domestic robots.
- ▶ 2010s-Present: Deep learning revolutionizes perception. Advanced humanoids (Atlas) and widespread use of drones and warehouse robots (Amazon Kiva).

From fixed industrial arms to intelligent, mobile machines.

Robot Taxonomy

According to the International Federation of Robotics (IFR), existing robots can be divided into two categories:

- Industrial robot: An automatically controlled reprogrammable multipurpose manipulator, programmable in three or more axes.
- ► **Service robot**: A robot that performs useful tasks for humans or equipment excluding industrial automation applications.

Robot Taxonomy

Industrial vs. Service Robots

Industrial robots

- ▶ **Purpose:** Precision tasks in structured, controlled environments like factories.
- ▶ **Key feature:** Work in constrained workspaces (rely on absolute position measurements and don't need complex perception of the surroundings).
- **Example:** A robotic arm on an assembly line.

Service robots

- Purpose: Assistance in unstructured, dynamic environments.
- ▶ **Key feature:** Operate in unconstrained environments (require advanced perception to determine the position and avoid obstacles).
- **Example:** A robotic vacuum cleaner or a surgical robot.

Industrial vs. Service Robots

Current Status:

- ▶ Industrial robots: Large-scale deployment.
 - ⇒ Simpler, more controllable setups make them easier and more reliable to implement.
- Service robots: Steadily increasing deployment.
 - ⇒ Huge market and promising prospects, accompanied by numerous technical challenges.

Service Robots

Asimov's Three Laws

- 1. A robot may not injure a human being or, through inaction, allow a human being to come to harm.
- 2. A robot must obey the orders given it by human beings except where such orders would conflict with the First Law.
- 3. A robot must protect its own existence as long as such protection does not conflict with the First or Second Laws.
 - short story "Runaround", 1942, by Isaac Asimov

Service Robots

Operational definition:

- ▶ The "sense-think-act" paradigm: perception, decision-making, and control.
- An abstract imitation of human activities: I feel (see/smell/listen/touch/etc.), I think, and I react.

Service Robots

Operational definition:

- **Perception**: What looks like around me?
- ▶ **Decision-making**: What should I do?
- Control: How do I achieve the action?

An Example

When a robot encounters an obstacle while moving autonomously, it:

- **senses (perception)**: There is an obstacle (i.e. a wall) in front of me.
- **thinks (decision-making)**: Turn slightly to the right to avoid and go around the obstacle.
- **acts (control)**: Adjust the speed of the wheels.

Service Robots

Current trends:

- ► Logistics and warehousing (Amazon Kiva)
- Autonomous vehicles (Waymo, Tesla)
- Exploration (Mars rovers, underwater drones)
- Agriculture (automated tractors, harvesting)
- Domestic service (vacuum cleaners, lawnmowers)
- Medical (delivery in hospitals, telepresence)
- Search and rescue
- Security and surveillance
- etc.

Mobile Robotics

Mobile robotics is concerned with a fundamental question of service robots, namely, how to move in the physical world.

- ▶ 3 fundamental questions:
 - ▶ Where am I?
 - ► Where am I going?
 - ► How to get there?
- ▶ To answer these questions the robot must:
 - ► Take measurements.
 - Model the environment.
 - Locate itself.
 - Plan a path to its goal location.

An Example

Questions?

Next: Practical Work 1 - ROS 2 Installation

