
IA712: Mobile Robotics
Lecture 2: Software for Robotics

Zhi Yan

ENSTA - Institut Polytechnique de Paris

1 / 25



Context: Computer
▶ A computer system (or computing device) includes: hardware, firmware,

operating system (the “main software”), middleware and software.

2 / 25



Context: Computer

▶ Hardware: CPU, RAM, motherboard, etc.

▶ Firmware (stored in ROM): BIOS, OpenCR firmware, etc.

▶ Operating System (OS): Microsoft Windows, macOS, Linux, etc.

▶ Middleware: Tomcat, ROS, ROS 2, etc.
=⇒ Bridging the gap between an OS or database and applications.

▶ Software: Minecraft, Photoshop, Firefox, etc.

3 / 25



A Robot

4 / 25



A Robot

A complex system with many concurrent
processes:

▶ Reading from multiple sensors (camera,
LiDAR, IMU).

▶ Controlling multiple actuators (wheels, arms).

▶ Running algorithms for localization, perception,
and planning.

▶ Communicating status to a user.

5 / 25



Why ROS?

Challenges:

▶ How do we manage this complexity?

▶ How do we make all these components talk to each other reliably and efficiently?

▶ How to maximize the reusability of developed software (e.g., from robot A to
robot B) ?

Solution:
▶ A middleware like ROS1 (Robot Operating System) and ROS 2 provides a

abstraction layer that decouples software components, allowing them to be
developed, tested, and run independently.
=⇒ Since 2010, ROS has become the de facto standard for robotics software.

1https://www.ros.org/
6 / 25

https://www.ros.org/


ROS & ROS 2

What is ROS & ROS 2:
▶ A distributed architecture for inter-process and inter-machine communication and

configuration.

▶ A collection of software packages and building tools.

▶ A set of development tools for system execution and data analysis.

What is ROS & ROS 2 not:
▶ A OS

▶ A programming language

▶ A programming environment (e.g., Visual Studio Code)

7 / 25



ROS

▶ Active years: 2007 - 2025 (end-of-life on May 31st, 2025).

▶ Software organization: (high) modularity.

▶ Communication between programs: XML-RPC (for “Master”) and TCP/UDP (for
“Topic”) sockets.

▶ Underlying OS: Mainly Linux, limited support for other OS.

▶ Programming language: Mainly written in C++ and Python.

▶ Code hosting: GitHub.

▶ License: 3-clause BSD License (for core of ROS).

8 / 25



ROS

▶ Supported robot platforms: TurtleBot, HSR, BARAKUDA, and many more.

▶ Supported sensors: Camera, LiDAR, IMU, and many more.
▶ Main components:

▶ Communication infrastructure (master, publisher, subscriber, etc.).
▶ Robot specific features (* msg, tf, urdf, actionlib, amcl, gmapping, navigation, etc.).
▶ Tools (command-line tools, rviz, rqt, etc.).

▶ Powerful support (integration with other libraries):
▶ Gazebo
▶ OpenCV
▶ PCL
▶ MoveIt!
▶ etc.

9 / 25



ROS 2

▶ Active years: 2014 - present.

▶ Release cycle: once a year.

▶ Does not break ROS, nor does it rollout into ROS.

▶ Breaking API with ROS, but conceptually very similar.

▶ Building on DDS (Data Distribution Service) for real-time systems.

10 / 25



Why Move to ROS 2?

▶ Modern API, minimal dependencies, and better portability (e.g., small embedded
platforms).

▶ Benefits of underlying DDS middleware:
▶ Master-less discovery (i.e. decentralized computation graph)
▶ Hard real-time capable
▶ Reliability
▶ Efficiency (UDP Multicast, shared memory, TLS over TCP/IP, etc.)

▶ Easier to work with multiple nodes in one process.

▶ Lifecycle management and verifiable systems.

▶ etc.

11 / 25



The ROS 2 Computation Graph

12 / 25



The ROS 2 Computation Graph
A ROS 2 system is a network of independent programs called nodes.

Camera
Node

Image Proc.
Node

Navigation
Node

Motor Ctrl.
Node

/image /ball

/cmd vel

Figure: A simplified representation of a ROS 2 system.

13 / 25



The ROS 2 Computation Graph

▶ Nodes: Executable programs performing a specific task (e.g., controlling a
camera, planning a path).

▶ Communication: Nodes communicate via mechanisms like “topics”, “services”,
and “actions”.

14 / 25



Topics: Asynchronous Streaming Data

Publish / Subscribe model:

Topics are used for continuous data streams. One node publishes data to a topic, and
any number of nodes can subscribe to that topic to receive the data.

▶ Decoupled: The publisher doesn’t know or care who is subscribed.

▶ Many-to-Many: Many nodes can publish to the same topic, and many can
subscribe.

▶ Asynchronous: “Fire and forget.” The publisher does not wait for a response.

Examples:

▶ Images from a camera (/image)

▶ Motor commands (/cmd vel)

15 / 25



Topics: Asynchronous Streaming Data

Topic-MultiplePublisherandMultipleSubscriber.gif

16 / 25

Topic-MultiplePublisherandMultipleSubscriber.gif


Services: Synchronous Request / Reply

Client / Server model:

Services are used for remote procedure calls. A client node sends a request, and a
server node performs a task and sends back a response.

▶ Coupled: The client and server are directly connected for the transaction.

▶ One-to-One: A single server handles requests from one or more clients.

▶ Synchronous: The client sends a request and waits until it receives a response
from the server.

Examples:

▶ Resetting a simulation (/reset).

▶ Pawning a new robot in a simulator (/spawn).

17 / 25



Services: Synchronous Request / Reply

Service-MultipleServiceClient.gif

18 / 25

Service-MultipleServiceClient.gif


Actions: Asynchronous Long-Running Tasks

Client / Server model with feedback:

Actions are for long-running, goal-oriented tasks that can be preempted. A client sends
a goal to an action server. The server executes the task, provides periodic feedback,
and sends a final result.

▶ Asynchronous: The client does not block while the goal is being executed.

▶ Preemptible: The client can cancel the goal at any time.

▶ Provides Feedback: The client is kept informed of the task’s progress.

Examples:

▶ “Navigate to coordinate (x , y).” The feedback could be the robot’s current
distance to the goal, and the result indicates success or failure.

19 / 25



Actions: Asynchronous Long-Running Tasks

Action-SingleActionClient.gif

20 / 25

Action-SingleActionClient.gif


Messages, Services, and Actions

How is data structured?
▶ Messages (.msg): Define the data structure for topics. For example, a simple

Twist.msg for velocity might contain linear and angular components.

▶ Services (.srv): Define the request and response data structures, separated by
---.

▶ Actions (.action): Define the goal, result, and feedback data structures, each
separated by ---.

Good-to-know:
These files (.msg, .srv, .action) are interface definitions, following the Interface
Definition Language (IDL) format.

21 / 25



Essential Command-Line Tools

The ros2 command is your main entry point for interacting with a running ROS 2
system.

Introspection Tools

▶ ros2 node list: See all running nodes.

▶ ros2 topic list: See all active topics.

▶ ros2 service list: See all available services.

▶ ros2 action list: See all available actions.

▶ ros2 topic echo <topic name>: View data being published on a topic.

▶ ros2 node info <node name>: See a node’s publishers, subscribers, etc.

22 / 25



Essential Command-Line Tools

Execution Tools
▶ ros2 run <package name> <executable name>: Launch a single node.

▶ ros2 launch <package name> <launch file>: Launch a group of nodes and
their configurations.

We will use these extensively in the practical work session.

23 / 25



How to Choose a Free Software License

24 / 25



Questions?

Next: Practical Work 2 - ROS 2 Beginner Level

25 / 25


