
IA712: Mobile Robotics
Lecture 3: System Integration

Zhi Yan

ENSTA - Institut Polytechnique de Paris

1 / 20

What is a Workspace?

A ROS 2 workspace is a directory containing the source code for your (custom) ROS
2 packages.
=⇒ The place where you develop, build, and install your own robotics software!

A typical workspace (ros2 ws) has the following structure:

▶ /src: Source space. ▷ Place your ROS 2 packages here.

▶ /build: Build space. ▷ The build tool, colcon, uses this for intermediate files.
You rarely interact with it directly.

▶ /install: Install space. ▷ After a successful build, the compiled programs,
libraries, and launch files are placed here, ready to be used.

▶ /log: Log space. ▷ Contains logs from the build process for debugging.

2 / 20

What is a Workspace?

ros2 ws

src build install log

3 / 20

The Build Tool
colcon (collective construction): The standard command-line tool to build ROS 2
packages.

Core command:
To build all packages in your workspace, you navigate to the root of the workspace and
run:

cd ˜/ ro s2 ws /
co l c on b u i l d

▶ colcon automatically discovers all the packages in the src directory.

▶ It resolves the dependencies between packages.

▶ It builds them in the correct order.

▶ It places the final executables and other files into the install directory.

Important: You must run colcon build from the root of the workspace,
not from the src directory.

4 / 20

What is a Package?

A package is the fundamental unit of software organization in ROS 2.

It’s a directory containing everything related to a specific piece of functionality.

A package can contain:

▶ ROS 2 nodes (C++ or Python source code)

▶ Launch files

▶ Configuration files

▶ Custom message/service/action definitions

▶ A package.xml file (metadata)

▶ A build file (CMakeLists.txt or setup.py)

5 / 20

What is a Package?

Packages are created using the ros2 pkg create command:

Example f o r a Python package
ro s2 pkg c r e a t e −−bu i l d−type ament python my package name

▶ ament: A collection of build rules and tools for building, testing, and installing
ROS 2 packages.

▶ colcon: Use the rules defined by ament to execute the build process.

6 / 20

The Manifest
Every ROS 2 package must contain a package.xml file, which defines the package’s
properties.
=⇒ Package’s “ID card”!

Key Information in package.xml:

▶ <name>: The unique name of the package.

▶ <version>: The version number of the package.

▶ <description>: A brief summary of what the package does.

▶ <maintainer>: The person responsible for the package.

▶ <license>: The software license (e.g., Apache 2.0, MIT).

▶ <build depend>: Dependencies needed to build the package.

▶ <exec depend>: Dependencies needed to run the package.

Important: Correctly defining dependencies is crucial for colcon to build the
workspace successfully.

7 / 20

Why Version Control?

How do you manage code, especially in a team?

Without Version Control
▶ nav node.py

▶ nav node working.py

▶ nav node final.py

▶ nav node final v2.py

▶ Zipping files and sending them via
email

▶ Who changed what, and when?

▶ How to revert a change that broke
everything?

With Version Control
▶ A complete history of every change.

▶ The ability to revert to any previous
state.

▶ Branching: Work on new features
without breaking the main code.

▶ Collaboration: Merge changes from
multiple people reliably.

▶ It’s the professional standard for all
software development!

8 / 20

The Basic Git Workflow

Git is a distributed version control system.

Your packages in ros2 ws/src should be Git repositories.

Typical solo workflow:

1. git add <files>: Stage your changes for commit.

2. git commit -m “Message”: Save a snapshot of your changes to the local history.
=⇒ A good message explains why you made the change.

3. git push: Upload your commits to a remote server like GitHub.

4. git pull: Download changes from the remote server.

9 / 20

The Basic Git Workflow

The most important file: .gitignore

▶ Your repository should only track source code.

▶ The build, install, and log directories are generated and should not be
tracked.

Add t h i s to a . g i t i g n o r e f i l e i n your workspace r oo t
b u i l d /
i n s t a l l /
l o g /

10 / 20

Collaboration with GitHub

GitHub hosts your remote Git repositories and provides powerful collaboration tools.

The Pull Request (PR) workflow:

1. Create a Branch: Make a new branch for your feature (e.g.,
feature/add-lidar-filter).

2. Push the Branch: Push your commits to this new branch on GitHub.

3. Open a Pull Request: From GitHub, request to merge your new branch into the
main branch (main or master).

4. Review and Discuss: Team members can review your code, suggest changes,
and discuss the implementation directly on the PR.

5. Merge: Once approved, the changes are merged into the main branch.

We will use this workflow for the final course project.

11 / 20

What is Continuous Integration?

Continuous Integration (CI) is the practice of automating the build and testing of
code every time a team member commits changes to version control.

Developer GitHub
CI Server

(GitHub Actions)

git push Webhook
Success

Failure

Core Idea: Catch integration bugs early and automatically.
=⇒ Your main branch should always build successfully.

12 / 20

A CI Workflow for ROS 2 with GitHub Actions

GitHub Actions is a CI/CD platform integrated into GitHub.

Define workflows in YAML files inside a .github/workflows directory in your
repository.

A typical ROS 2 CI workflow when a developer opens a Pull Request:

1. A virtual machine running Ubuntu is automatically started.

2. ROS 2 Humble is installed.

3. Your repository’s source code is checked out.

4. Dependencies from your package.xml files are installed using rosdep.

5. The entire workspace is built with colcon build.

6. Automated tests are run with colcon test.

7. A ✓ (success) or x (failure) is reported on the Pull Request.

This prevents merging code that breaks the system.

13 / 20

The Development Workflow

The standard workflow for developing with your own packages is:

1. Create a workspace directory (e.g., ros2 ws/src).

2. Create or clone your package(s) inside the src directory.

3. Navigate to the workspace root (ros2 ws).

4. Run colcon build to compile your packages.

5. Source the local setup file: source install/setup.bash.

6. Run your nodes or launch files.

Sourcing is very essential: Sourcing your local install/setup.bash file tells the ROS
2 environment where to find your newly built executables and packages.

14 / 20

Overlays and Underlays

Sourcing files creates a layered environment:

▶ Underlay: The base ROS 2 installation you sourced first (e.g.,
/opt/ros/humble/setup.bash).
=⇒ It provides all the standard packages.

▶ Overlay: Your local workspace (/ros2 ws/install/setup.bash).
=⇒ When you source this after the underlay, it adds your custom packages on
top.

15 / 20

Overlays and Underlays

Your Workspace (ros2 ws)

Base ROS 2 Install (/opt/ros/humble)

Overlay

Underlay

The system will prioritize executables from the Overlay. =⇒ This allows you to use
your own modified version of a package over the default one.

16 / 20

The Problem with ros2 run
For a real robot, you might need to start 10, 20, or even more nodes at once:

▶ Camera driver

▶ LiDAR driver

▶ Motor controller

▶ Localization node

▶ Path planner node

▶ ...and many more.

Challenge:

Starting each one manually in a separate terminal with ros2 run is inefficient,
error-prone, and doesn’t scale.

Solution:
ROS 2 Launch System. =⇒ Launch files allow you to start and configure
an entire system of multiple nodes with a single command.

17 / 20

The Problem with ros2 run
For a real robot, you might need to start 10, 20, or even more nodes at once:

▶ Camera driver

▶ LiDAR driver

▶ Motor controller

▶ Localization node

▶ Path planner node

▶ ...and many more.

Challenge:

Starting each one manually in a separate terminal with ros2 run is inefficient,
error-prone, and doesn’t scale.

Solution:
ROS 2 Launch System. =⇒ Launch files allow you to start and configure
an entire system of multiple nodes with a single command.

17 / 20

The Problem with ros2 run
For a real robot, you might need to start 10, 20, or even more nodes at once:

▶ Camera driver

▶ LiDAR driver

▶ Motor controller

▶ Localization node

▶ Path planner node

▶ ...and many more.

Challenge:

Starting each one manually in a separate terminal with ros2 run is inefficient,
error-prone, and doesn’t scale.

Solution:
ROS 2 Launch System. =⇒ Launch files allow you to start and configure
an entire system of multiple nodes with a single command.

17 / 20

Example: Python Launch File
Launch files are typically written in Python.
=⇒ Allow for programmatic and flexible system startups.

File: my package/launch/turtlesim.launch.py

from l aunch import LaunchDe s c r i p t i on
from l a u n c h r o s . a c t i o n s import Node

def g e n e r a t e l a u n c h d e s c r i p t i o n () :
r e t u r n LaunchDe s c r i p t i on ([

Node (
package=’ t u r t l e s i m ’ ,
e x e c u t a b l e=’ t u r t l e s im n o d e ’ ,
name=’ sim ’
) ,
Node (
package=’ t u r t l e s i m ’ ,
e x e c u t a b l e=’ t u r t l e t e l e o p k e y ’ ,
name=’ t e l e o p ’
)

])

This file describes a system with two nodes. To run it, you use the command:

r o s2 l aunch my package t u r t l e s i m . l aunch . py

18 / 20

The Role of a Hardware Driver

How does ROS 2 talk to a real sensor or actuator?

=⇒ A driver is just a ROS 2 node.

LiDAR

Hardware

LiDAR Driver
Node

/scan
USB/Serial Publish

To Nav. Nodes

▶ The driver node reads raw data from the hardware (e.g., via a USB serial port).

▶ It converts this raw data into a standard ROS 2 message type (e.g.,
sensor msgs/msg/LaserScan).

▶ It publishes this standardized message onto a topic for the rest of the system to
use.

Benefit? =⇒ Your navigation code doesn’t need to know which brand
of LiDAR you are using.

19 / 20

The Role of a Hardware Driver

How does ROS 2 talk to a real sensor or actuator? =⇒ A driver is just a ROS 2 node.

LiDAR

Hardware

LiDAR Driver
Node

/scan
USB/Serial Publish

To Nav. Nodes

▶ The driver node reads raw data from the hardware (e.g., via a USB serial port).

▶ It converts this raw data into a standard ROS 2 message type (e.g.,
sensor msgs/msg/LaserScan).

▶ It publishes this standardized message onto a topic for the rest of the system to
use.

Benefit?

=⇒ Your navigation code doesn’t need to know which brand
of LiDAR you are using.

19 / 20

The Role of a Hardware Driver

How does ROS 2 talk to a real sensor or actuator? =⇒ A driver is just a ROS 2 node.

LiDAR

Hardware

LiDAR Driver
Node

/scan
USB/Serial Publish

To Nav. Nodes

▶ The driver node reads raw data from the hardware (e.g., via a USB serial port).

▶ It converts this raw data into a standard ROS 2 message type (e.g.,
sensor msgs/msg/LaserScan).

▶ It publishes this standardized message onto a topic for the rest of the system to
use.

Benefit? =⇒ Your navigation code doesn’t need to know which brand
of LiDAR you are using.

19 / 20

Questions?

Next: Practical Work 3 - ROS 2 Intermediate Level

20 / 20

