|A712: Mobile Robotics

Lecture 3: System Integration

Zhi Yan

ENSTA - Institut Polytechnique de Paris

ENST2
@ IP PARIS

1/20

What is a Workspace?

A ROS 2 workspace is a directory containing the source code for your (custom) ROS
2 packages.
= The place where you develop, build, and install your own robotics software!

A typical workspace (ros2_ws) has the following structure:

» /src: Source space. > Place your ROS 2 packages here.

» /build: Build space. > The build tool, colcon, uses this for intermediate files.
You rarely interact with it directly.

» /install: Install space. > After a successful build, the compiled programs,
libraries, and launch files are placed here, ready to be used.

> /log: Log space. > Contains logs from the build process for debugging.
g

ENST2
@ IP PARIS

2/20

What is a Workspace?

ros2_ws

N

src build install

log

N8 IP PARIS

3/20

The Build Tool

colcon (collective construction): The standard command-line tool to build ROS 2
packages.

Core command:
To build all packages in your workspace, you navigate to the root of the workspace and
run:

cd “/ros2_ws/
colcon build

> colcon automatically discovers all the packages in the src directory.
> It resolves the dependencies between packages.
» It builds them in the correct order.

» It places the final executables and other files into the install directory.

ENST2

Important: You must run colcon build from the root of the workspace,
f@}lp PARIS

not from the src directory.
4/20

What is a Package?
A package is the fundamental unit of software organization in ROS 2.

It's a directory containing everything related to a specific piece of functionality.

A package can contain:

» ROS 2 nodes (C++ or Python source code)
Launch files

Configuration files

>
>
» Custom message/service/action definitions
> A package.xml file (metadata)

>

A build file (CMakeLists.txt or setup.py) ENST2
@lp PARIS

5/20

What is a Package?

Packages are created using the ros2 pkg create command:

Example for a Python package
ros2 pkg create —build—type ament_python my_package_name

» ament: A collection of build rules and tools for building, testing, and installing
ROS 2 packages.

» colcon: Use the rules defined by ament to execute the build process.

ENST2
@ IP PARIS

6/20

The Manifest

Every ROS 2 package must contain a package.xml file, which defines the package's
properties.
= Package's “ID card"!

Key Information in package.xml:

>

VVvVvYvYyVvYyy

<name>: The unique name of the package.

<version>: The version number of the package.
<description>: A brief summary of what the package does.
<maintainer>: The person responsible for the package.
<license>: The software license (e.g., Apache 2.0, MIT).
<build_depend>: Dependencies needed to build the package.

<exec_depend>: Dependencies needed to run the package.

Important: Correctly defining dependencies is crucial for colcon to build the
workspace successfully.

ENST2
@ IP PARIS

7/20

Why Version Control?

How do you manage code, especially in a team?

Without Version Control

| 2

vVvyyvyy

vy

nav_node.py
nav_node_working.py
nav_node_final.py
nav_node_final v2.py

Zipping files and sending them via
email

Who changed what, and when?

How to revert a change that broke
everything?

With Version Control

>
| 4

A complete history of every change.

The ability to revert to any previous
state.

Branching: Work on new features
without breaking the main code.

Collaboration: Merge changes from
multiple people reliably.

It's the professional standard for all
software development! ENST2
@lp PARIS

8/20

The Basic Git Workflow

Git is a distributed version control system.

Your packages in ros2_ws/src should be Git repositories.

Typical solo workflow:

1. git add <files>: Stage your changes for commit.

2. git commit -m “Message”: Save a snapshot of your changes to the local history.
—> A good message explains why you made the change.

3. git push: Upload your commits to a remote server like GitHub.

4. git pull: Download changes from the remote server.

ENST2
@ IP PARIS

9/20

The Basic Git Workflow

The most important file: .gitignore

» Your repository should only track source code.
> The build, install, and log directories are generated and should not be

tracked.
Add this to a .gitignore file in your workspace root
build/
install/
log /
ENST2
;';{}lpmms

10/20

Collaboration with GitHub

GitHub hosts your remote Git repositories and provides powerful collaboration tools.

The Pull Request (PR) workflow:
1. Create a Branch: Make a new branch for your feature (e.g.,
feature/add-lidar-filter).
2. Push the Branch: Push your commits to this new branch on GitHub.

3. Open a Pull Request: From GitHub, request to merge your new branch into the
main branch (main or master).

4. Review and Discuss: Team members can review your code, suggest changes,
and discuss the implementation directly on the PR.

5. Merge: Once approved, the changes are merged into the main branch.

ENST2

W2 1P PARIS

We will use this workflow for the final course project.

11/20

What is Continuous Integration?

Continuous Integration (Cl) is the practice of automating the build and testing of
code every time a team member commits changes to version control.

Cl Server Succes
(GitHub Actions)
Failure

Core Idea: Catch integration bugs early and automatically.
= Your main branch should always build successfully. ENST2

git push

Webhook

Developer

W2 1P PARIS

12/20

A Cl Workflow for ROS 2 with GitHub Actions

GitHub Actions is a CI/CD platform integrated into GitHub.
Define workflows in YAML files inside a .github/workflows directory in your
repository.

A typical ROS 2 Cl workflow when a developer opens a Pull Request:

. A virtual machine running Ubuntu is automatically started.
. ROS 2 Humble is installed.

. Your repository’'s source code is checked out.

1
2
3
4. Dependencies from your package.xml files are installed using rosdep.
5. The entire workspace is built with colcon build.

6. Automated tests are run with colcon test.

7

. A/ (success) or x (failure) is reported on the Pull Request.

ENST2

This prevents merging code that breaks the system. W2 1P PaRIS

13/20

The Development Workflow

The standard workflow for developing with your own packages is:

1.

I

Create a workspace directory (e.g., ros2_ws/src).

Create or clone your package(s) inside the src directory.
Navigate to the workspace root (ros2_ws).

Run colcon build to compile your packages.

Source the local setup file: source install/setup.bash.

Run your nodes or launch files.

Sourcing is very essential: Sourcing your local install/setup.bash file tells the ROS
2 environment where to find your newly built executables and packages. ENST2

W8 1P PARIS

14 /20

Overlays and Underlays

Sourcing files creates a layered environment:

» Underlay: The base ROS 2 installation you sourced first (e.g.,
/opt/ros/humble/setup.bash).
—> It provides all the standard packages.

» Overlay: Your local workspace (/ros2_ws/install/setup.bash).
= When you source this after the underlay, it adds your custom packages on
top.

N2 1P PARIS

15/20

Overlays and Underlays

Overlay

Your Workspace (ros2_ws)

Underlay

Base ROS 2 Install (/opt/ros/humble)

The system will prioritize executables from the Overlay. = This allows you to use
your own modified version of a package over the default one. ENST2

W8 1P PARIS

16 /20

The Problem with ros2 run
For a real robot, you might need to start 10, 20, or even more nodes at once:
» Camera driver
LiDAR driver

Motor controller

>
>
» Localization node
» Path planner node
>

...and many more.

ENST2
@ IP PARIS

17/20

The Problem with ros2 run
For a real robot, you might need to start 10, 20, or even more nodes at once:
» Camera driver
> LiDAR driver
» Motor controller
» Localization node
» Path planner node

» ..and many more.

Challenge:

Starting each one manually in a separate terminal with ros2 run is inefficient,
error-prone, and doesn't scale.

ENST2
@ IP PARIS

17/20

The Problem with ros2 run
For a real robot, you might need to start 10, 20, or even more nodes at once:
» Camera driver
> LiDAR driver
» Motor controller
» Localization node
» Path planner node

» ..and many more.

Challenge:

Starting each one manually in a separate terminal with ros2 run is inefficient,
error-prone, and doesn't scale.

Solution:
ROS 2 Launch System. — Launch files allow you to start and configure ENSTa
an entire system of multiple nodes with a single command. V3 1P PaRIs

17/20

Example: Python Launch File

Launch files are typically written in Python.
— Allow for programmatic and flexible system startups.

File: my_package/launch/turtlesim.launch.py

from launch import LaunchDescription
from launch_ros.actions import Node

def generate_launch_description ():
return LaunchDescription ([
Node (
package="turtlesim
executable="turtlesim_node’
name='"sim’
).
Node (
package="turtlesim’
executable="turtle_teleop_key ',
name="teleop’
)
D

This file describes a system with two nodes. To run it, you use the command: ENST2
ros2 launch my_package turtlesim .launch.py W 1p pARIS

18/20

The Role of a Hardware Driver

How does ROS 2 talk to a real sensor or actuator?

19/20

The Role of a Hardware Driver

How does ROS 2 talk to a real sensor or actuator? = A driver is just a ROS 2 node.

USB/Serial

: iver| Publish
LiDAR () L'Dﬁ\\lidzr“’er . -—> To Nav. Nodes

Hardware

» The driver node reads raw data from the hardware (e.g., via a USB serial port).

» It converts this raw data into a standard ROS 2 message type (e.g.,
sensor_msgs/msg/LaserScan).

» It publishes this standardized message onto a topic for the rest of the system to
use.

Benefit? ENST2
@ IP PARIS

19/20

The Role of a Hardware Driver

How does ROS 2 talk to a real sensor or actuator? = A driver is just a ROS 2 node.

USB/Serial

: iver| Publish
LiDAR () L'Dﬁ\\lidzr“’er . -—> To Nav. Nodes

Hardware

» The driver node reads raw data from the hardware (e.g., via a USB serial port).

» It converts this raw data into a standard ROS 2 message type (e.g.,
sensor_msgs/msg/LaserScan).

» It publishes this standardized message onto a topic for the rest of the system to
use.

Benefit? = Your navigation code doesn't need to know which brand ENST2
of LiDAR you are using.

W2 1P PARIS

19/20

Questions?

Next: Practical Work 3 - ROS 2 Intermediate Level

ENST2
@ IP PARIS

20/20

