
IA712: Mobile Robotics
Lecture 5: Kinematics

Zhi Yan

ENSTA - Institut Polytechnique de Paris

1 / 26



What is Kinematics?

Definition:
Kinematics is the study of motion without considering the forces and torques that
cause it. It describes the robot’s position, velocity, and acceleration.

Key assumptions in this lecture:

▶ The robot is a rigid body.

▶ The wheels roll without slipping (the “no-slip” condition).

▶ Motion occurs on a 2D plane.

Objective:

To create a mathematical model that links the actuator speeds (wheel motors) to the
velocity of the robot’s body.

2 / 26



Forward vs. Inverse Kinematics

For a mobile robot, kinematics helps us answer two fundamental questions:

1. If my wheels turn at a certain speed, how is the robot’s body moving through the
world?
Flow: From wheel speeds → to robot velocity.

=⇒ Forward kinematics

2. To make the robot’s body move in a desired direction at a certain speed, how fast
do I need to turn my individual wheels?
Flow: From robot velocity → to wheel speeds.
=⇒ Inverse kinematics

3 / 26



Forward vs. Inverse Kinematics

For a mobile robot, kinematics helps us answer two fundamental questions:

1. If my wheels turn at a certain speed, how is the robot’s body moving through the
world?
Flow: From wheel speeds → to robot velocity.
=⇒ Forward kinematics

2. To make the robot’s body move in a desired direction at a certain speed, how fast
do I need to turn my individual wheels?
Flow: From robot velocity → to wheel speeds.
=⇒ Inverse kinematics

3 / 26



Why is this crucial?

Forward kinematics
▶ It is the basis of odometry (estimating

position).

▶ It allows the robot to know “where it
is” based solely on its wheel
movements.

Inverse kinematics
▶ It is essential for any motor controller

that takes velocity commands (like
/cmd vel) and translates them into
actions.

▶ It allows the robot to execute a
desired trajectory.

4 / 26



Frames of Reference
To describe motion, we must define our coordinate systems, or “frames”.
▶ Global frame (world frame): A fixed, external reference frame.

=⇒ Often called map or odom in ROS.
▶ Local frame (robot frame): A frame attached to the robot itself, typically at its

center of rotation.
=⇒ Often called base link in ROS.

xW

yW

{W}

{R}
xR

yR

pose: (x , y , θ)

A robot’s pose in the world is its pos. (x , y) and ori. θ w.r.t. the global frame.
=⇒ Kinematics allows us to calculate how this pose changes over time.

5 / 26



The Mathematics of Frames: Rotation

The relationship between the robot frame {R} and the world frame {W } is defined by
a translation (x , y) and a rotation θ.

A point PR = (xR , yR) in the robot frame can be expressed in the world frame
PW = (xW , yW ) via a rotation.

2D rotation matrix:

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)

The transformation is then: PW = R(θ) · PR .

6 / 26



Homogeneous Transformation Matrices

To combine rotation AND translation into a single matrix operation, we use
homogeneous coordinates.

A point (x , y) becomes a vector (x , y , 1)T .

Homogeneous transformation matrix T :

T =

cos θ − sin θ x
sin θ cos θ y
0 0 1

 =

(
R(θ) p
0T 1

)
where p = (x , y)T is the translation vector.

The full transformation of a point from the robot frame to the world frame is:
PW = T · PR .

7 / 26



The Differential Drive Model
Let’s model the robot from Lecture 4:

▶ Two wheels separated by a distance L.

▶ Each wheel has a radius r .

▶ The left and right wheels rotate at angular velocities ωL and ωR .

Robot Center

L

vL = r · ωL

vR = r · ωR

Motion is controlled by varying the relative speed of the two wheels.

Goal: Given the wheel speeds (ωL, ωR), what are the linear velocity v and angular
velocity ω of the robot’s center?

8 / 26



Instantaneous Center of Curvature (ICC)

The motion of any rigid body in a plane can be described as a rotation around a single
point, the Instantaneous Center of Curvature (ICC).

By varying ωL and ωR , the robot pivots around this point.

The distance RICC from the center of the robot to the ICC is given by:

ω =
v

RICC
⇐⇒ RICC =

v

ω

where ω is the robot’s angular velocity and v is its linear velocity.

9 / 26



Instantaneous Center of Curvature (ICC)

ICC
{R}

vL

vR
v

L

RICC

ω

10 / 26



Deriving Forward Kinematics
The linear velocity of the robot, v , is the average of the two wheel velocities:

v =
vR + vL

2
=

r(ωR + ωL)

2

The angular velocity of the robot, ω, is determined by the difference in wheel speeds,
causing the robot to rotate around the ICC.

ω =
vR − vL

L
=

r(ωR − ωL)

L

Forward kinematic model:
These two equations allow us to map from the wheel velocity space (ωL, ωR) to the
robot body velocity space (v , ω).

Note: The vector (v , ω) is exactly what a geometry msgs/msg/Twist message
in ROS represents!

11 / 26



Forward Kinematics: Special Cases

Moving in a straight line:

If ωL = ωR , then ω = 0.
The robot moves straight ahead with velocity v = r · ωL.
The ICC is at infinity.

Rotating in place:

If ωL = −ωR , then v = 0.
The robot spins about its center point with angular velocity ω = 2r ·ωR

L .
The ICC is at the robot’s center.

12 / 26



From Velocity to Pose: Odometry
The forward kinematics model gives us the robot’s velocity (v , ω) in its own frame
{R}.
To find the new pose (x ′, y ′, θ′), we must project this velocity into the world frame
{W } and integrate it.

Odometry equations:

ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω

Discrete update (Euler approximation):

xk+1 = xk + vk cos(θk)∆t

yk+1 = yk + vk sin(θk)∆t

θk+1 = θk + ωk∆t

13 / 26



The Problem with Odometry: Drift

Odometry is a form of “dead reckoning”.

Sources of error:
▶ Wheel slippage (uneven ground, rapid acceleration).

▶ Inaccurate wheel diameter, mechanical backlash.

▶ Time discretization.

Consequence:

▶ Errors accumulate without bound over time.

▶ The position estimate will inevitably drift.

▶ Odometry is reliable in the short term, but unusable alone in the long term.

14 / 26



Modeling Kinematic Errors & Uncertainty

Professionally, we don’t just acknowledge errors, we model them.

Odometry errors are both systematic (e.g., one wheel is slightly larger) and
non-systematic (e.g., random slip).

Error propagation:

The robot’s velocity (v , ω) is not known perfectly. We represent this uncertainty with
a covariance matrix:

Σv =

(
σ2
v σvω

σvω σ2
ω

)
Σv in velocity must be propagated to the robot’s pose (x , y , θ).

▶ Require computing the Jacobian of the motion model.

▶ The core mathematical basis of the Extended Kalman Filter (EKF) used in
SLAM.

15 / 26



Deriving Inverse Kinematics

Goal: Given a desired linear velocity v and angular velocity ω, what are the required
left and right wheel speeds (ωL, ωR)?

We simply need to rearrange our forward kinematics equations:

▶ 2v = vR + vL
▶ ωL = vR − vL

Solving for vL and vR gives us the wheel linear velocities:

vR = v +
ωL

2

vL = v − ωL

2

16 / 26



Final Step: To Motor Commands

We have the required linear velocities of the wheels (vL, vR). The final step is to
convert these back to the angular velocities that a motor controller needs.

Inverse kinematic model:

ωR =
vR
r

=
1

r

(
v +

ωL

2

)
ωL =

vL
r

=
1

r

(
v − ωL

2

)

Note: A robot’s motor controller in ROS implements exactly these equations to turn a
/cmd vel message into motor speeds!

17 / 26



Beyond Differential Drive

Two other important models (cf. Lecture 4):

1. Ackermann steering: For car-like vehicles with steerable front wheels.

2. Omnidirectional robots: Capable of moving instantly in any direction.

18 / 26



Ackermann Kinematic Equations

The ICC lies on the axis of the rear wheel. The distance to the ICC depends on the
steering angle α and the wheelbase Lack : RICC = Lack

tanα .

Forward Kinematics (bicycle model):

ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω =
v

RICC
=

v

Lack
tanα

=⇒ The command is (v , α), and the state is (x , y , θ).

19 / 26



Mecanum Wheel Kinematics

The kinematics are typically expressed in matrix form.

Inverse kinematics:
Calculates the speeds of the 4 wheels (ω1, . . . , ω4) from the body velocity command
(ẋR , ẏR , ωR) in the robot frame:

ω1

ω2

ω3

ω4

 =
1

r


1 −1 −(Lx + Ly )
1 1 (Lx + Ly )
1 1 −(Lx + Ly )
1 −1 (Lx + Ly )


 ẋR
ẏR
ωR


where Lx and Ly are the half-distances between the wheels.

20 / 26



Legged Robot Kinematics

▶ Increased complexity: Unlike a wheeled robot, a legged robot’s “base” is not
fixed relative to its actuators.

▶ Approach: Each leg is modeled as a serial manipulator (a kinematic chain).

▶ Forward kinematics: Given the angles of each joint (motor) in the leg, where is
the foot tip relative to the robot’s body?

▶ Inverse kinematics: To place the foot at a desired location, what angles must
the joints have?

21 / 26



The Role of Leg Kinematics in Locomotion

Why do we care about the foot position?

=⇒ Stability!

▶ Forward kinematics: Determine the current locations of all feet on the ground.
▶ These ground-contact points form a Support Polygon.
▶ For the robot to be statically stable (i.e., not fall over when standing still), its

Center of Mass (CoM) must be projected vertically inside this polygon.

▶ Inverse kinematics: Calculate the joint angles needed to place a swinging foot in
a new location, creating a new support polygon and allowing the robot to move
forward.

22 / 26



The Role of Leg Kinematics in Locomotion

Why do we care about the foot position?
=⇒ Stability!

▶ Forward kinematics: Determine the current locations of all feet on the ground.
▶ These ground-contact points form a Support Polygon.
▶ For the robot to be statically stable (i.e., not fall over when standing still), its

Center of Mass (CoM) must be projected vertically inside this polygon.

▶ Inverse kinematics: Calculate the joint angles needed to place a swinging foot in
a new location, creating a new support polygon and allowing the robot to move
forward.

22 / 26



The Need for a Formal Description

So far, the kinematic parameters (r , L) are just numbers in our equations. But how
does the entire ROS ecosystem know about the physical structure of our robot?

▶ How does a visualization tool like RViz know how to draw the robot?

▶ How does the system know where the LiDAR sensor is relative to the wheels?

23 / 26



Describing the Robot to ROS: URDF

URDF (Unified Robot Description Format):

An XML file format used to describe all the physical elements of a robot: its links and
its joints.

▶ <link>: The rigid parts of the robot (chassis, wheel).

▶ <joint>: The kinematic relationship between two links.

Example of a wheel joint:

<joint name="left_wheel_joint" type="continuous">

<parent link="base_link"/>

<child link="left_wheel_link"/>

<origin xyz="0 0.15 -0.05" rpy="0 0 0"/>

<axis xyz="0 1 0"/>

</joint>

24 / 26



Managing Frames in ROS: tf2

Once the robot is described in URDF, ROS needs to know how the pose of each
<link> changes over time.

tf2: The ROS transform library

▶ TF2 manages the relationship between all coordinate frames in the system.

▶ It maintains a tree of all transformations (e.g., map → odom → base link →
lidar link).

▶ A node like robot state publisher uses the joint states and the URDF to
continuously publish the tf2 transforms.

▶ This allows any other ROS node to ask “What is the LiDAR’s position in the map
frame?” at any time.

25 / 26



Questions?

Next: Practical Work 5 - tf2 & URDF

26 / 26


