
Practical Work 5: tf2 & URDF
IA712: Mobile Robotics

Zhi Yan

1 Objective

The goal of this session is to describe a robot’s physical structure using the Unified Robot
Description Format (URDF) and to manage its coordinate frames using tf2. By the end,
you will be able to:

• Write a simple URDF file for a differential drive robot.

• Launch a robot state publisher to publish the robot’s kinematic chain as tf2 transforms.

• Visualize the robot model and its coordinate frames in RViz2.

• Publish joint states to animate the robot model.

2 What are URDF and tf2?

• URDF: An XML file that describes the robot as a tree of links and joints.

– A link is a rigid part of the robot (e.g., the chassis, a wheel). It has inertial and
visual properties.

– A joint connects two links and defines how one link can move relative to the other
(e.g., revolute, continuous, fixed).

• tf2: A ROS 2 library that lets you keep track of multiple coordinate frames over time.
The robot state publisher node reads the URDF and automatically publishes the trans-
formations between the robot’s links to tf2.

3 Creating a Robot Description Package

1. Open a new terminal and navigate to your workspace’s source directory.

cd ˜/ ros2_ws/src

2. Create a new package to hold our robot’s description.

ros2 pkg create --build -type ament_cmake robot_description_pkg

3. Inside this new package, create directories for launch files and URDF files.

cd robot_description_pkg
mkdir launch urdf

1

4 Writing the URDF File

1. Create a new file named urdf/diff drive robot.urdf.

touch urdf/diff_drive_robot.urdf

2. Open the file in a text editor and add the following content. This describes a simple robot
with a chassis link and two wheel links.

<?xml version="1.0"?>
<robot name="diff_drive_robot">

<link name="base_link">
<visual >
<geometry >
<box size="0.4 0.2 0.1"/>
</geometry >
<origin xyz="0 0 0.05" rpy="0 0 0"/>
<material name="blue">
<color rgba="0.0 0.0 0.8 1.0"/>
</material >
</visual >
</link>

<link name="left_wheel_link">
<visual >
<geometry >
<cylinder radius="0.05" length="0.04"/>
</geometry >
<origin xyz="0 0 0" rpy="1.5707 0 0"/>
<material name="black">
<color rgba="0.0 0.0 0.0 1.0"/>
</material >
</visual >
</link>

<link name="right_wheel_link">
<visual >
<geometry >
<cylinder radius="0.05" length="0.04"/>
</geometry >
<origin xyz="0 0 0" rpy="1.5707 0 0"/>
<material name="black"/>
</visual >
</link>

<joint name="left_wheel_joint" type="continuous">
<parent link="base_link"/>
<child link="left_wheel_link"/>
<origin xyz="0.1 0.13 0" rpy="0 0 0"/>
<axis xyz="0 1 0"/>
</joint>

<joint name="right_wheel_joint" type="continuous">
<parent link="base_link"/>
<child link="right_wheel_link"/>
<origin xyz="0.1 -0.13 0" rpy="0 0 0"/>
<axis xyz="0 1 0"/>

2

</joint>

</robot>

Study this file: Notice how each <joint> connects a <child> link to a <parent> link at
a specific <origin> (xyz offset and rpy orientation). This defines the kinematic tree.

5 Visualizing the Robot with a Launch File

We will create a launch file that starts RViz2 and the necessary nodes to publish the robot’s
state.

1. Create a file named launch/display.launch.py.

2. Add the following Python code. This launch file looks a bit complex, but it’s a standard
template for visualizing robots.

import os
from ament_index_python.packages import
get_package_share_directory
from launch import LaunchDescription
from launch_ros.actions import Node
import xacro

def generate_launch_description ():

Get the path to the URDF file
urdf_file_path = os.path.join(
get_package_share_directory(’robot_description_pkg ’),
’urdf’,
’diff_drive_robot.urdf’)

Read the URDF file content
with open(urdf_file_path , ’r’) as file:
robot_description_content = file.read()

return LaunchDescription ([
Node to publish joint states (e.g., wheel rotations)
Node(
package=’joint_state_publisher_gui ’,
executable=’joint_state_publisher_gui ’,
name=’joint_state_publisher_gui ’
),

Node to publish the robot’s state (tf2 transforms) from the
URDF

Node(
package=’robot_state_publisher ’,
executable=’robot_state_publisher ’,
name=’robot_state_publisher ’,
output=’screen ’,
parameters =[{’robot_description ’: robot_description_content }]
),

RViz2 for visualization
Node(
package=’rviz2’,

3

executable=’rviz2’,
name=’rviz2’,
output=’screen ’
)

])

3. We should then edit CMakeLists.txt and package.xml to correctly install the URDF and
launch files. Add these lines to CMakeLists.txt before the ament package() call:

install(DIRECTORY
urdf
launch
DESTINATION share/${PROJECT_NAME}
)

Also, add the dependencies to package.xml:

<exec_depend >joint_state_publisher_gui </ exec_depend >
<exec_depend >robot_state_publisher </ exec_depend >
<exec_depend >rviz2 </ exec_depend >

6 Build, Run, and Visualize

1. Navigate to the root of your workspace and build.

cd ˜/ ros2_ws
colcon build --packages -select robot_description_pkg

2. Source the workspace and run the launch file.

source install/setup.bash
ros2 launch robot_description_pkg display.launch.py

3. Three windows should appear: RViz2, a terminal with node outputs, and a “Joint State
Publisher” GUI with sliders.

4. Configure RViz2:

• In the top-left “Displays” panel, set the “Fixed Frame” to base link.

• Click the “Add” button in the bottom-left.

• In the “By display type” tab, add aRobotModel display. Your robot should appear!

• Click “Add” again and add a TF display. This will show all the coordinate frames.

5. Animate the robot:

• Find the “Joint State Publisher” GUI window.

• Move the sliders for the left wheel joint and right wheel joint.

• Observe the wheels spinning in the RViz2 window! The joint state publisher gui
is publishing joint positions, and the robot state publisher is using them to update
the tf2 transforms for the wheels.

This concludes the practical session. You have successfully described a robot’s
kinematics, published its state to ROS 2, and visualized it.

4

	Objective
	What are URDF and tf2?
	Creating a Robot Description Package
	Writing the URDF File
	Visualizing the Robot with a Launch File
	Build, Run, and Visualize

