Practical Work 5: tf2 & URDF
TA712: Mobile Robotics

7Zhi Yan

1 Objective

The goal of this session is to describe a robot’s physical structure using the Unified Robot
Description Format (URDF) and to manage its coordinate frames using tf2. By the end,
you will be able to:

e Write a simple URDF file for a differential drive robot.
e Launch a robot_state_publisher to publish the robot’s kinematic chain as tf2 transforms.
e Visualize the robot model and its coordinate frames in RViz2.

e Publish joint states to animate the robot model.

2 What are URDF and tf27?
e URDF: An XML file that describes the robot as a tree of links and joints.

— A link is a rigid part of the robot (e.g., the chassis, a wheel). It has inertial and
visual properties.

— A joint connects two links and defines how one link can move relative to the other
(e.g., revolute, continuous, fixed).

e tf2: A ROS 2 library that lets you keep track of multiple coordinate frames over time.
The robot_state_publisher node reads the URDF and automatically publishes the trans-
formations between the robot’s links to tf2.

3 Creating a Robot Description Package

1. Open a new terminal and navigate to your workspace’s source directory.

cd “/ros2_ws/src

2. Create a new package to hold our robot’s description.

ros2 pkg create --build-type ament_cmake robot_description_pkg

3. Inside this new package, create directories for launch files and URDF files.

cd robot_description_pkg
mkdir launch urdf

4 Writing the URDF File

1. Create a new file named urdf/diff_drive_robot.urdf.

touch urdf/diff_drive_robot.urdf

2. Open the file in a text editor and add the following content. This describes a simple robot
with a chassis link and two wheel links.

<?xml version="1.0"7?>
<robot name="diff_drive_robot"”>

<link name="base_link">
<visual>

<geometry>

<box size="0.4 0.2 0.1"/>
</geometry>

<origin xyz="0 @ 0.05" rpy="0 @ 0"/>
<material name="blue">

<color rgha="0.0 0.0 0.8 1.0"/>
</material>

</visual>

</link>

<link name="left_wheel_link">

<visual>

<geometry>

<cylinder radius="0.05" length="0.04"/>
</geometry>

<origin xyz="0 @ Q0" rpy="1.5707 0 0"/>
<material name="black">

<color rgha="0.0 0.0 0.0 1.0"/>
</material>

</visual>

</link>

<link name="right_wheel_link">

<visual>

<geometry>

<cylinder radius="0.05" length="0.04"/>
</geometry>

<origin xyz="0 @ 0" rpy="1.5707 0 0"/>
<material name="black"/>

</visual>

</link>

<joint name="left_wheel_joint" type="continuous">
<parent link="base_link"/>

<child link="left_wheel_link"/>

<origin xyz="0.1 ©0.13 @" rpy="0 0 0"/>

<axis xyz="0 1 0"/>

</joint>

<joint name="right_wheel_joint"” type="continuous">
<parent link="base_link"/>

<child link="right_wheel_link"/>

<origin xyz="0.1 -0.13 0" rpy="0 0 0"/>

<axis xyz="@ 1 0"/>

</joint>

</robot>

Study this file: Notice how each <joint> connects a <child> link to a <parent> link at
a specific <origin> (xyz offset and rpy orientation). This defines the kinematic tree.

5 Visualizing the Robot with a Launch File

We will create a launch file that starts RViz2 and the necessary nodes to publish the robot’s
state.

1. Create a file named launch/display.launch.py.

2. Add the following Python code. This launch file looks a bit complex, but it’s a standard
template for visualizing robots.

import os

from ament_index_python.packages import
get_package_share_directory

from launch import LaunchDescription
from launch_ros.actions import Node
import xacro

def generate_launch_description():

Get the path to the URDF file

urdf_file_path = os.path.join(
get_package_share_directory(’robot_description_pkg’),
‘urdf’,

’diff_drive_robot.urdf’)

Read the URDF file content
with open(urdf_file_path, ’r’) as file:
robot_description_content = file.read()

return LaunchDescription ([
Node to publish joint states (e.g., wheel rotations)
Node (
package=’joint_state_publisher_gui’,
executable=’joint_state_publisher_gui’,
name=’joint_state_publisher_gui’

) b

Node to publish the robot’s state (tf2 transforms) from the
URDF

Node (

package=’robot_state_publisher’,

executable="robot_state_publisher’,

name=’robot_state_publisher’,

output=’screen’,

parameters=[{’robot_description’: robot_description_content}]

))

RViz2 for visualization
Node (
package=’rviz2’,

executable=’rviz2’,
name=’rviz2’,
output=’screen’
)

D

3. We should then edit CMakelLists.txt and package.xml to correctly install the URDF and
launch files. Add these lines to CMakeLists.txt before the ament_package() call:

install (DIRECTORY

urdf

launch

DESTINATION share/${PROJECT_NAME}

)

Also, add the dependencies to package.xml:

<exec_depend>joint_state_publisher_gui</exec_depend>
<exec_depend>robot_state_publisher</exec_depend>
<exec_depend>rviz2</exec_depend>

6 Build, Run, and Visualize

1. Navigate to the root of your workspace and build.

cd “/ros2_ws
colcon build --packages-select robot_description_pkg

2. Source the workspace and run the launch file.

source install/setup.bash
ros2 launch robot_description_pkg display.launch.py

3. Three windows should appear: RViz2, a terminal with node outputs, and a “Joint State
Publisher” GUI with sliders.

4. Configure RViz2:

e In the top-left “Displays” panel, set the “Fixed Frame” to base_link.

e Click the “Add” button in the bottom-left.

e In the “By display type” tab, add a RobotModel display. Your robot should appear!
e Click “Add” again and add a TF display. This will show all the coordinate frames.

5. Animate the robot:

e Find the “Joint State Publisher” GUI window.
e Move the sliders for the left_wheel_joint and right_wheel_joint.

e Observe the wheels spinning in the RViz2 window! The joint_state_publisher_gui
is publishing joint positions, and the robot_state_publisher is using them to update
the tf2 transforms for the wheels.

This concludes the practical session. You have successfully described a robot’s
kinematics, published its state to ROS 2, and visualized it.

	Objective
	What are URDF and tf2?
	Creating a Robot Description Package
	Writing the URDF File
	Visualizing the Robot with a Launch File
	Build, Run, and Visualize

