

Human-centered Benchmarking for Socially-compliant Robot Navigation

laroslav Okunevich¹, Vincent Hilaire¹, Stephane Galland¹, Olivier Lamotte¹, Liubov Shilova², Yassine Ruichek¹, and Zhi Yan¹

1 Laboratory of Distributed Knowledge and Artificial Intelligence (CIAD), UTBM, Univ. Bourgogne Franche-Comté, France. firstname.lastname@utbm.fr 2 Center for Bioinformatics, Saarland Informatics Campus, Germany. lish00001@stud.uni-saarland.de

1. Background and Motivation

Evaluation of socially-compliant (SC) robot navigation by robot-centered metrics (RCM)

✓ The experiments with RCM can be done in a simulation

✓ RCM can be incorporated in the navigation algorithms

2. Aim and objectives

Aim: improve the effectiveness of sociallycompliant robot navigation evaluation

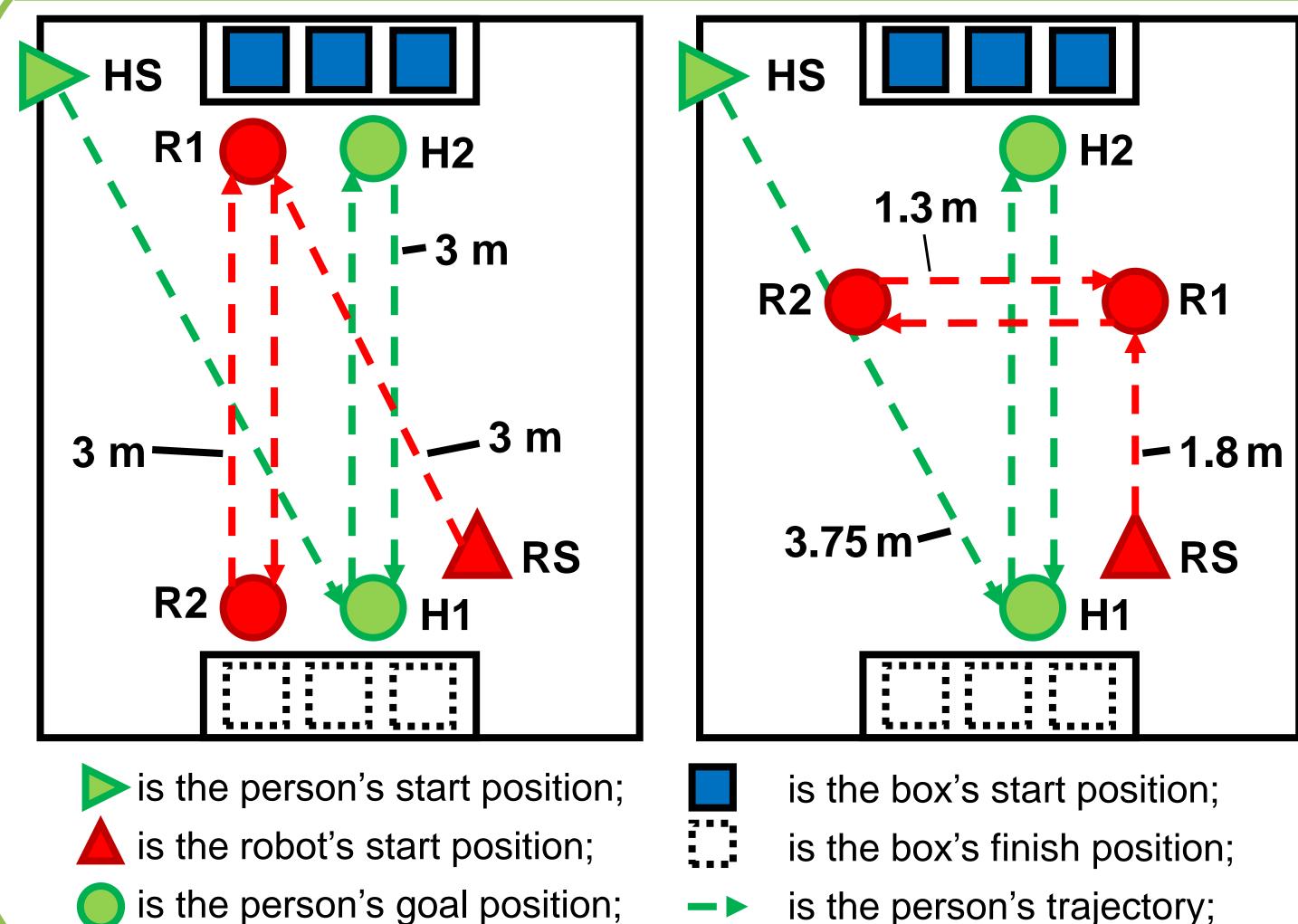
Objectives:

- 1) To develop an end-to-end human-centered benchmarking framework

-3 -2 -1 0 1 2 3 Fig.1. The example of RCM – agent's trajectory [1]

measure HCM [2]

⊠ RCM cannot represent the human feelings


Evaluation of SC robot navigation by human-centered metrics (HCM)

✓ HCM are the most accurate measuring of human feelings

☑ The HCM experiments require real participants

⊠ HCM cannot be incorporated in the navigation algorithms

3. Benchmarking Framework

2) To evaluate the correlation between HCM and RCM

Fig.3. The experiment to evaluate SC robot navigation

3. Contributions

- 1) The proposed reproducible end-to-end human-centered **benchmarking** framework. The benchmark was tested with 2 SC and two regular robot navigation methods
- 2) We found the correlation between some RCM and HCM, which allows to judge the social part of human-robot interaction by RCM

4. Social Competence Metrics

HCM

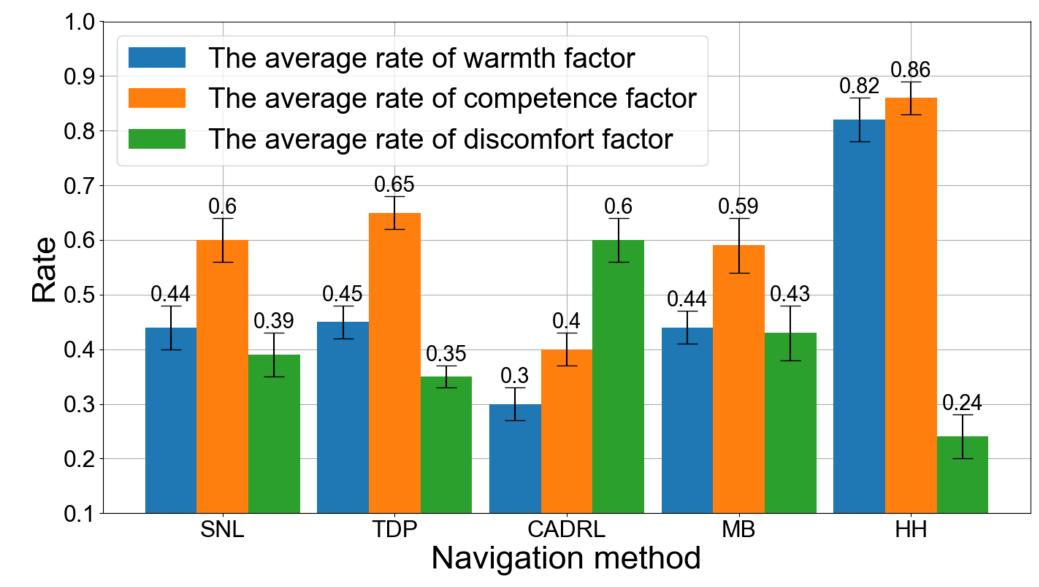
The Robotic Social Attributes Scale (RoSAS) [3]

Warmth	Competence	Discomfort	
Нарру	Capable	Scary	
Feeling	Responsive	Strange	
Social	Interactive	Awkward	

is the person's goal position; is the robot's goal position;

is the robot's trajectory.

Reliable Organic Dangerous Compassionate Competent Awful Emotional Knowledgeable Aggressive RCM $R_{extra}^{r} = T^{r}/T_{h}^{r}$ $R_{succ} = N_{succ}/N$ $R_{haza} = \frac{1}{n} * \sum_{i=1}^{n} \left(\frac{T_i^{hazard}}{T_i^{social}}\right)$ $R^{h}_{extra} = T^{h}/T^{h}_{r}$ $R_{dec} = \frac{1}{n_{v}} * \sum_{i=1}^{n_{v}} \left(\frac{V_{i}}{V^{max}}\right)$ $R_{dist} = D^r / D_h^r$


5. Experiments

Experimental setting:

- 20 participants
- 4 methods:

1) Social Navigation Layers (SNL) [4]

2) Time Dependent Planning (TDP) [5]

The mean values of HCM and RCM

Metric	SNL	TDP	CADRL	MB
Warmth	0.44	0.45	0.30	0.44
Competence	0.60	0.65	0.40	0.59
Discomfort	0.39	0.35	0.60	0.43
R _{haza}	0.59	0.57	0.65	0.56
R^h_{extra}	0.9	0.88	0.94	0.87
R _{dist}	0.96	1.00	0.95	0.97
R _{dec}	0.56	0.58	0.17	0.61
R_{extra}^r	0.77	0.74	1.00	0.83
R _{succ}	0.92	0.85	1.00	0.8

3) Collision Avoidance with Deep Reinforcement Learning (CADRL) [6]

4) Move base (MB) [7]

Fig.4. The mean values of HCM with standard error (N = 20)

Conclusion

The developed framework can be applied to evaluate the social element of robot navigation

TDP demonstrates the best **HCM**

 R_{extra}^{r} and R_{dist} reflect the HCM and can be used to judge the social competence of navigation methods

The software-hardware integration scheme is available: https://github.com/Nedzhaken/human_aware_navigation

References

[1] Y. F. Chen, M. Everett, M. Liu, and J. P. How, "Socially aware motion planning with deep reinforcement learning," in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 1343–1350.

[2] C. Mavrogiannis, A. M. Hutchinson, J. Macdonald, P. Alves-Oliveira, and R. A. Knepper, "Effects of distinct robot navigation strategies on human behavior in a crowded environment," in 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI). IEEE, 2019, pp. 421–430.

[3] C. M. Carpinella, A. B. Wyman, M. A. Perez, and S. J. Stroessner, "The robotic social attributes scale (rosas) development and validation," in Proceedings of the 2017 ACM/IEEE International Conference on human-robot interaction, 2017, pp. 254–262.

[4] D. V. Lu, D. Hershberger, and W. D. Smart, "Layered costmaps for context-sensitive navigation," in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2014, pp. 709-715.

[5] M. Kollmitz, K. Hsiao, J. Gaa, and W. Burgard, "Time dependent planning on a layered social cost map for human-aware robot navigation," in 2015 European Conference on Mobile Robots (ECMR). IEEE, 2015, pp. 1-6.

[6] M. Everett, Y. F. Chen, and J. P. How, "Motion planning among dynamic, decision-making agents with deep reinforcement learning," in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 3052–3059.

[7] https://github.com/ros-planning/navigation