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is the box’s start position;

 is the box’s finish position;

 is the person’s trajectory;

 is the robot’s trajectory.
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Evaluation of socially-compliant (SC) robot 

navigation by robot-centered metrics (RCM)

☑ The experiments with RCM can be done in a 

simulation

☑ RCM can be incorporated in the navigation 

algorithms

☒ RCM cannot represent the human feelings

Evaluation of SC robot navigation by 

human-centered metrics (HCM)

☑ HCM are the most accurate measuring of 

human feelings

☒ The HCM experiments require real 

participants

☒ HCM cannot be incorporated in the 

navigation algorithms

Aim: improve the effectiveness of socially-

compliant robot navigation evaluation

Objectives: 

1) To develop an end-to-end human-centered 

benchmarking framework

2) To evaluate the correlation between HCM 

and RCM

1) The proposed reproducible end-to-end human-centered 

benchmarking framework. The benchmark was tested with 2 SC and 

two regular robot navigation methods

2) We found the correlation between some RCM and HCM, which 

allows to judge the social part of human-robot interaction by RCM 
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is the person’s start position;

 is the robot’s start position;

 is the person’s goal position;

 is the robot’s goal position;

HCM

4. Social Competence Metrics
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The Robotic Social Attributes Scale (RoSAS) [3]

Warmth Competence Discomfort

Happy Capable Scary

Feeling Responsive Strange

Social Interactive Awkward

Organic Reliable Dangerous

Compassionate Competent Awful

Emotional Knowledgeable Aggressive
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Metric SNL TDP CADRL MB

Warmth 0.44 0.45 0.30 0.44

Competence 0.60 0.65 0.40 0.59

Discomfort 0.39 0.35 0.60 0.43

𝑅ℎ𝑎𝑧𝑎 0.59 0.57 0.65 0.56

𝑅𝑒𝑥𝑡𝑟𝑎
ℎ 0.9 0.88 0.94 0.87

𝑅𝑑𝑖𝑠𝑡 0.96 1.00 0.95 0.97

𝑅𝑑𝑒𝑐 0.56 0.58 0.17 0.61

𝑅𝑒𝑥𝑡𝑟𝑎
𝑟 0.77 0.74 1.00 0.83

𝑅𝑠𝑢𝑐𝑐 0.92 0.85 1.00 0.8

The developed framework can be applied to evaluate the social element 

of robot navigation

TDP demonstrates the best HCM 

𝑹𝒆𝒙𝒕𝒓𝒂
𝒓  and 𝑹𝒅𝒊𝒔𝒕 reflect the HCM and can be used to judge the social 

competence of navigation methods

The software-hardware integration scheme is available: 

https://github.com/Nedzhaken/human_aware_navigation

Experimental setting:

• 20 participants

• 4 methods:

 1) Social Navigation Layers (SNL) [4]

 2) Time Dependent Planning (TDP) [5]

 3) Collision Avoidance with Deep   

 Reinforcement Learning (CADRL) [6]

 4) Move base (MB) [7]
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5. Experiments

Fig.1. The example of RCM –

agent’s trajectory [1]

Fig.2. The experiment to 

measure HCM [2]

Fig.3. The experiment to evaluate 

SC robot navigation

Fig.4. The mean values of HCM with standard error (N = 20)

The mean values of HCM and RCM
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