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What?

• Navigation is the skill or the process of planning a route for a
mobile device and taking it there.

• Autonomous robot navigation can be defined as the
combination of the four fundamental competences:

• Perception (c.f. Lecture 4)
• (self-) localization
• Path planning (c.f. Lecture 7)
• Motion control

• Navigation actually holistically answers three fundamental
questions in mobile robotics:

• Where am I?
• Where am I going?
• How to get there?
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Why?

• Mobile (service) robots need to move autonomously in the
working environment.
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How?

• Typical robot navigation system architecture:

• Navigation can be done with or without maps:
• With map: a priori about the environment, technically mature
• Without map: no structured priors, mainly relying on online

reasoning, technology expected in the future
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How?

• Robot navigation from a ROS perspective:
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Localization

• The ability of a robot to determine its position in an
environment. <= Where am I?

• The localization capability improves the “intelligence” of robot
navigation.

• When you are blindfolded, you will intuitively feel the decline
in your “navigation performance”.

• There are robot navigation methods that do not require
localization: wall-following (e.g. bug algorithm), heading
toward the goal, etc.

• How the robot gets its position: someone helps it, or it
calculates by itself:

• Beacon systems (through communication/interaction): Global
Navigation Satellite System (GNSS), Wi-Fi Positioning System
(WPS), etc.

• Self-estimation (through the measurement of the body and the
outside world): wheel encoder, IMU, lidar, camera, etc.
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Localization
GNSS

• The basic principles have been covered in Lecture 4.
• Initially developed for military use, it has since expanded to

civilian use.
• Well integrated into our daily life:

• GNSS receivers are a standard module in modern smartphones.
• Widely used for (self-driving) car navigation.
• Navigation of other means of transport (airplanes, ships),

precision agriculture, smart city, etc.

• According to its working principle, it is suitable for outdoor,
not indoor.
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Localization
GNSS for (self-driving) car navigation

• Usually in conjunction with digital and/or high-definition maps.
• GNSS can tell the receiver’s longitude, latitude and altitude

(also time).
• Usually necessary to convert latitude-longitude readings into

UTM (Universal Transverse Mercator) coordinates to match
the map display.
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Localization
GNSS for (self-driving) car navigation

• Pros: mature technology, wide coverage (worldwide), low
civilian price, easy operation, strong adaptability, etc.

• Cons:
• Low positioning data update frequency (10 Hz).
• Meter-level positioning accuracy (for self-driving cars, at least

centimeter-level is required).
• Signal occlusion and reflection problems in cities (especially

urban canyons with tall buildings).
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Localization
GNSS error sources

1 Satellite clock errors, ephemeris errors, ionospheric and
tropospheric errors (delay), etc. <= For all users

2 Signal propagation errors (delay) that cannot be measured by
the user or corrected by the calibration model.

3 Errors inherent in receivers such as internal noise, channel
delay, multipath effects, etc.
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Localization
Ways to reduce errors

• Differential GPS: a network of fixed ground reference stations
is used to broadcast the difference between the positions
indicated by the satellites and the known fixed positions.

• Real Time Kinematic (RTK): DGPS + carrier-phase
enhancement (measurements of the phase of the signal’s
carrier wave).

=> Both can provide up to centimeter-level accuracy within 30 km.
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Localization
IMU

• The basic principles have been covered in Lecture 4: using the
accelerometer and gyroscope to infer the current position and
orientation based on the position and orientation at the
previous moment (i.e. dead reckoning).

• More specifically, according to Newton’s laws of motion, by
measuring the angular velocity and acceleration of the carrier
in the inertial reference frame, integrating it with time, and
transforming it into the navigation reference frame, the IMU
can output the position and orientation of the carrier.

• The output frequency of IMU is high, generally 100Hz or even
higher.

• IMU can provide accurate output for a short period of time,
but errors will accumulate over time.
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Localization
Self-estimation: IMU

• IMUs are usually used in conjunction with other sensors and
have become one of the standard components of mobile
robots.

• For self-driving cars (or outdoor robots in general), the IMU
can work with GNSS to improve the positioning accuracy of
the vehicle:

• IMU can make up for the defect of the low update frequency
of GNSS.

• GNSS can correct the motion error of IMU (caused by
accumulation).
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Localization
Error accumulation of IMU

Take human walking in the dark as an example:
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Localization
Multi-sensor fusion

Additional sources of information (e.g. by touch) can improve a
person’s self-localization accuracy:
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Localization
GNSS vs GNSS+IMU

Take self-driving cars as an example:
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Localization
Self-estimation

• The robot estimates its position in the environment based on
the observations (i.e. exteroception) and some known
information (e.g. maps).

• A typical idea is for a robot to determine its position in the
environment by matching the perceived local environment
information with the environment in a known map.

• (accurate) Self-estimation is challenging, not only because of
the noise/error from the sensors but also from the actuators.

• Another problem that affects self-localization is known as
sensor aliasing: e.g. environments with the same appearance
in different locations result in very similar sensor readings (i.e.
lack of features).

• Proprioceptive sensors (e.g. wheel encoder, IMU) can help!
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Localization
Self-estimation

At the operational level, the following components may need to be
considered:

• Models of the deployed robot, including its geometric model,
kinematic model, noise model, etc.

• Models about the work environment, such as maps.
• Methods for environmental feature extraction (via sensor

readings).
• Strategies for matching features to environment models.
• Methods for updating robot pose estimation.
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Localization
Self-estimation

To gain a further understanding of actuator noise and error
accumulation, let’s look at odometric position estimation over time
(from a known position by integrating the movement) for a
differential-drive robot:

• Left: growth of the pose uncertainty for linear movement.
• Right: growth of the pose uncertainty for circular movement.

Navigation – Zhi Yan 19/33 – www.utbm.fr



UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Localization
Self-estimation

“act-see” cycle for localization (by R. Siegwart et al. @ ETH Zurich)

• A robot is in an environment
(a simple 1D example)

• “see”: the robot queries its
sensors => finds itself next to
a pillar

• “act”: robot moves 1m forward
• motion estimated by wheel

encoders
• accumulation of uncertainty

• “see”: the robot queries its
sensors again => finds itself
next to a pillar

• Belief update (information
fusion with uncertainty models)
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Localization
Self-estimation

Belief representation (uncertainty modeling):

• Continuous map with single
hypothesis probability distribution
p(x) => powerless against
uncertainty

• Continuous map with multiple
hypotheses probability
distribution p(x)

• Discretized metric map (grid k)
with probability distribution p(k)

• Discretized topological map
(nodes n) with probability
distribution p(n)
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Localization
Self-estimation based on probabilistic robotics

• Still remember Bayes’ Theorem?

P(A | B) = P(B | A)P(A)
P(B)

• This theorem is used by both Kalman-filter (continuous pose
representation and Gaussian error model) and Markov
(discretized pose representation) localization algorithms during
the measurement update.

Navigation – Zhi Yan 22/33 – www.utbm.fr



UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Localization
Self-estimation based on probabilistic robotics

• “see” : probabilistic estimation of the robot’s new belief state
bel(xt) as a function of its measurement data zt and its
former belief state bel(xt):

bel(xt) = ηP(zt | xt ,M)bel(xt)

where P(zt | xt ,M) is the probabilistic measurement model
(i.e. perception) that is, the probability of observing the
measurement data zt given the knowledge of the map M and
the robot’s position xt . Thereby η = P(y)−1 is the
normalization factor so that ΣP = 1 (or

∫
P = 1 for

continuous case).
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Localization
Self-estimation based on probabilistic robotics

• Still remember the law of total probability?

Continuous case :P(A) =

∫ ∞

−∞
P(A | X = x)fX (x)dx

Discrete case :P(A) =
∑
n

P(A | Bn)P(Bn)

• This law is used by both Kalman-filter and Markov
localization algorithms during the prediction update.
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Localization
Self-estimation based on probabilistic robotics

• “act” : probabilistic estimation of the robot’s new belief state
bel(xt) based on the previous location bel(xt−1) and the
probabilistic motion model p(xt | ut , xt−1) with action ut (i.e.
control):

Continuous case :bel(xt) =

∫
P(xt | ut , xt−1)bel(xt−1)dxt−1

Discrete case :bel(xt) =
∑
xt−1

P(xt | ut , xt−1)bel(xt−1)
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Localization
Kalman Filter vs. Markov localization

Kalman filter localization:
• Pros: can track the robot from an initially known position and

is inherently both precise and efficient.
• Cons: may fail to manage a large number of robot pose

hypotheses (due to growing uncertainty) and end up getting
lost irretrievably.

Markov localization:
• Pros: can track the robot from any unknown position and can

recover from ambiguous situations.
• Cons: update the probabilities of all positions within the entire

state space requires a discrete representation of the space, e.g.
occupancy grid map, involving computational efficiency issues.
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Localization
Kalman Filter vs. Markov localization

“act-see” cycle for localization (by R. Siegwart et al. @ ETH Zurich)
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Localization
Monte Carlo localization (MCL)

Let’s take a closer look at a Markov-based approach, i.e. Monte
Carlo localization1:

• Probability estimation based on particle filter (a
sampling-based method).

• Computationally efficient, no need to compromise into
coarse-grained localization.

1ROS implementation: http://wiki.ros.org/amcl
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Localization
Monte Carlo localization (MCL)

1 The algorithm typically starts with a uniform random
distribution of particles over the configuration space, meaning
the robot has no information about where it is and assumes it
is equally likely to be at any point in space.

2 Whenever the robot moves, it shifts the particles to predict its
new state after the movement.

3 Whenever the robot senses something, the particles are
resampled based on recursive Bayesian estimation, i.e., how
well the actual sensed data correlate with the predicted state.

4 Ultimately, the particles should converge towards the actual
position of the robot.
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Localization
Monte Carlo localization (MCL)

• Randomly generate M particles
• Estimate the pose xt of each

particle based on xt−1
according to the motion model
of the robot.

• The weight of each particle is
calculated based on the sensor
readings.

• Update the state of each
particle.

• Resampling to get M particles
from all particles according to
the new weight value.
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Localization
Adaptive Monte Carlo localization (AMCL)

Adaptive:
• Dynamically adjust the number

of particles in the filter:
• When the robot’s pose is

highly uncertain, the
number of particles is
increased.

• When the robot’s pose is
well determined, the
number of particles is
decreased.

• A trade-off between processing
speed and localization
accuracy.
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Summary

• Navigation for outdoor vehicles (e.g. self-driving cars).
• Typical localization methods in mobile robotics:

self-estimation based on probability theory.
• Monte Carlo localization (MCL).
• Further reading: error modeling for odometric position

estimation, Kalman-filter localization.
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The end

Thank you for your attention!

Any questions?
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