
UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

System Integration

RO51 - Introduction to Mobile Robotics

Zhi Yan
May 22, 2024

https://yzrobot.github.io/

www.utbm.fr

https://yzrobot.github.io/


UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

What?

• Bringing together the physical components (hardware) and the

controlling programs (software) to create a single, functional

system.

• Software-hardware integration for mobile robotics.

• Like having two actors work together seamlessly in a play.

System Integration � Zhi Yan 2/30 � www.utbm.fr



UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

What?

• Hardware: thermometer, microcontroller, led display, knob

• Software: turn the heating or cooling on and o� based on the

settings

• Integration: understand the data from the temperature

sensor and control the heating system

System Integration � Zhi Yan 3/30 � www.utbm.fr



UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Why?

• Ensure performance and optimize resource utilization:

C (software) > or < C (hardware)

• Reduce system redundancy

• Reduce development costs

• Improve iteration e�ciency

System Integration � Zhi Yan 4/30 � www.utbm.fr



UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

How?

• De�ne requirements and system architecture
• Understand the purpose
• Identify hardware and software components
• Plan communication protocols

• Hardware selection and con�guration
• Choose compatible hardware
• Set up hardware properly

• Software development and integration
• Write device drivers (if needed)
• Develop the main software program
• Implement data exchange protocols

• Testing and validation
• Thorough testing is crucial
• Validate functionality

=> Successful software-hardware integration is an iterative process!

System Integration � Zhi Yan 5/30 � www.utbm.fr



UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Integration in practice

Goal: Build a robot that can navigate crowds

Copyright: EU project SPENCER (2013-2016)

System Integration � Zhi Yan 6/30 � www.utbm.fr



UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Integration in practice

Hardware1:

• Sensors: a 3D lidar, a 2D

lidar, four RGB-D cameras

and a sonar belt

• Computing Units: a
CPU-based computing unit,

a CPU-GPU-based

computing unit

• Communications: USB,
Ethernet

• Peripherals: a set of LED

lights, a LED display

1https://github.com/Nedzhaken/human_aware_navigation

System Integration � Zhi Yan 7/30 � www.utbm.fr

https://github.com/Nedzhaken/human_aware_navigation


UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Integration in practice

Sensor Data release Measure. Horizontal Vertical
frequency distance FoV FoV

3D lidar 10 Hz 150 m 360◦ 30◦

2D lidar 40 Hz 30 m 270◦ -

RGB-D cam. 30 Hz 6 m 87◦ 58◦

Sonar 40 Hz 4 m 15◦ -

System Integration � Zhi Yan 8/30 � www.utbm.fr



UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Integration in practice

System Integration � Zhi Yan 9/30 � www.utbm.fr



UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Integration in practice

Jetson
Xavier

Battery

4 x Intel
Realsense D455

Computing Unit

Power Supply

Sensors

RS-16-3D
Lidar

RS-16-3D
Lidar Box

Low level

Hokuyo 2D
Lidar

USB hub

5 x UltraSonic
HC-SR04

Periphery

LED display

ESP32

12 VDC

12
 V

D
C

Et
he

rn
et

Jackal computing
unit5 VDC

Ethernet

USB

5 VDC

USB

USB 5 VDC
I2

C
5 

V
D

C

12
 V

D
C

Et
he

rn
et

12 VDCEthernet

Digital pin 4 x LED 5 VDC

12 VDC

HDMI

System Integration � Zhi Yan 10/30 � www.utbm.fr



UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Integration in practice

Software:

NVIDIA Jetson AGX

Filtered
point
 cloud

2D
bounding
box (BB)

RGB
images Laser scan

Map

Position of the robot
on the map

People
trajectories

Point
cloud

Onboard Mini-ITX PC

People
coordinates

3D Lidar driver
rslidar

Receives 3D point cloud

Background removal
lidar_background_removal
Removes the static obstacles

from the 3D point cloud

2D BB to 3D BB
rgbd_detection2d_3d
Calculates the global

coordinates of
detected people by 2D
BB and depth images

2D Lidar driver
hokuyo_node

Receives 2D point
cloud

Depth images
People tracker

bayes_people_tracker
Calculates the people

trajectories

RGB-D camera driver
realsense_ros

Receives color and depth
images

Yolo2 detection
darknet_ros

Detects the people
by color images

3D Lidar detection
object3d_detector_gpu

Detects the people by
3D point cloud

HA navigation
module

human_aware_navigation
Navigates the robot in
human-awareness way

AMCL module
amcl

Receives the
global coordinates

of the robot Map server
map_server

Receives prepared
environment map

Module Input Output Freq.

3D lidar driver Raw data 3D point cloud 10 Hz
Background removal 3D point cloud, map 3D point cloud 10 Hz
3D object detector 3D point cloud 3D bounding box 20 Hz
RGB-D camera driver Raw data Color and depth images 30 Hz
YOLOv2 2D object detector Color image 2D bounding box 44 Hz
2D bounding box to 3D 2D bounding box, depth image 3D bounding box 25 Hz
Multi-target tracker 3D bounding box Human trajectory, etc. 30 Hz

2D lidar driver Raw data 2D point 40 Hz
Localization 2D point, map Robot pose 40 Hz

System Integration � Zhi Yan 11/30 � www.utbm.fr



UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Integrating a robot system using ROS packages

A few tips:

1 Draw a functional block diagram representing the system that

needs to be integrated.

2 Determine dependencies of ROS packages (e.g. rosdep,

colcon).

3 De�ne enabling elements for communication between packages

such as topics, services, actions, etc.

4 Use the tools provided by ROS (e.g. rqt_graph, rqt_monitor)

for debugging.

System Integration � Zhi Yan 12/30 � www.utbm.fr



UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Continuous Integration

• What? Continuous Integration (CI) is a software development

practice where developers frequently merge their code changes

into a central repository, triggering automated builds and tests.

• Why? It helps identify any (integration) issues or bugs early in

the development lifecycle, improve software quality, and reduce

time to release.

• How?

System Integration � Zhi Yan 13/30 � www.utbm.fr



UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Continuous Integration

A breakdown of how CI typically works:

1 Developer makes changes

2 Commit and push (to the central repository)

3 CI triggered (by a CI server)

4 Automated build

5 Automated testing

6 Feedback and action: �tests pass� or �tests fail�

System Integration � Zhi Yan 14/30 � www.utbm.fr



UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Continuous Integration

Some well-known CI tools

System Integration � Zhi Yan 15/30 � www.utbm.fr



UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Continuous Integration

• CircleCI
• A CI & Continuous Delivery (CD) platform for DevOps

practices
• Facebook, Coinbase, Sony, Kickstarter, GoPro, and Spotify

used it
• Automatically test builds in either Docker containers or virtual

machines

• Travis CI
• Closely connected with online repositories such as GitHub,

Bitbucket, and GitLab
• Free for open source projects until 2020
• An example: https://github.com/yzrobot/adaptive_
clustering/blob/master/.travis.yml

• Jenkins
• Written in Java and fully open source
• Can be deployed locally

System Integration � Zhi Yan 16/30 � www.utbm.fr

https://github.com/yzrobot/adaptive_clustering/blob/master/.travis.yml
https://github.com/yzrobot/adaptive_clustering/blob/master/.travis.yml


UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Version Control

• What? Version Control (VC) is a system that keeps track of

changes to a set of �les (e.g. code, blueprint, manuscript,

etc.) over time.
• Why? Prevent data loss (data security), make collaboration

easy, improve code quality (problem tracing), try new ideas

(low-risk experimentation).
• How? (Image Source: Tower)

System Integration � Zhi Yan 17/30 � www.utbm.fr



UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Version Control

A breakdown of how VC typically works:

1 Centralized repository: A central location that stores all the

�les and their entire history, can be a server or a cloud-based

storage solution.

2 Snapshot: Whenever someone makes a change to a �le, VC

takes a snapshot of that �le and stores it in the repository,

along with information like who made the change, why they

made it, and when.

3 Version history: A history of all the changes made to a �le.

4 Reverting changes: If there's a problem with the current

version of a �le, one can easily revert back to a previous

version that worked.

5 Branching: Branches of the main project can be created for

development of new features or bug �xes without a�ecting the

main code base.

System Integration � Zhi Yan 18/30 � www.utbm.fr



UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Version Control

SVN vs. Git:
• SVN (Subversion): A centralized VC, developers work on

their local copies and need to connect to a central server to

download updates or upload changes.
• Git: A distributed VC. Every developer has a complete copy of

the project history on their machine, and can therefore work

o�ine and collaborate by sharing their local copies with each

other.

Feature SVN Git

Model Centralized Distributed

O�ine work Limited Possible

Branching Simpler More complex

complexity but powerful

Learning curve Easier Steeper

Con�ict resolution Can be trickier More robust

System Integration � Zhi Yan 19/30 � www.utbm.fr



UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Version Control

Which one is better?

• SVN: Small team, prioritize simplicity, and need �ne-grained

access control.

• Git: Larger team, value o�ine work, need powerful branching

features, or use platforms like GitHub.

In summary, Git is the more popular choice nowadays due to its

�exibility and scalability. However, SVN can still be a good option

for speci�c work�ows.

System Integration � Zhi Yan 20/30 � www.utbm.fr



UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Docker

What?

• An open-source platform for developing, deploying, and

running applications.

• Packages applications and their dependencies into standardized

units called containers.

• Containers are lightweight, portable, and self-contained.

System Integration � Zhi Yan 21/30 � www.utbm.fr



UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Docker

Why?

• Consistency: Applications run the same way everywhere.

• Isolation: Applications run in isolation, preventing con�icts.

• Portability: Containers run on any system with Docker

installed.

• Agility: Faster development, testing, and deployment cycles.

• Scalability: Easily scale applications up or down by adding or

removing containers.

System Integration � Zhi Yan 22/30 � www.utbm.fr



UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Docker

How?

• Images: Read-only templates that de�ne the contents of a

container.

• Containers: Running instances of images.

• Registries: Stores for sharing and downloading Docker

images.

System Integration � Zhi Yan 23/30 � www.utbm.fr



UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Docker

Getting started with Docker:

• Install Docker on your system:

https://docs.docker.com/get-docker/

• Run a simple hello world container:

$ docker run hello-world

• Explore Docker Hub:

https://hub.docker.com/

System Integration � Zhi Yan 24/30 � www.utbm.fr

https://docs.docker.com/get-docker/
https://hub.docker.com/


UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Integration Testing

What?
• Focuses on interfaces between software modules.
• Veri�es data �ow and interaction between components.
• Checks if the combined modules ful�ll the intended

functionality.
• Often follows unit testing (but before system testing), which

focuses on individual units.

System Integration � Zhi Yan 25/30 � www.utbm.fr



UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Integration Testing

Why?

• Early defect detection: Identify issues arising from module

interactions before system testing.

• Improved system stability: Ensure modules work together

cohesively to prevent system crashes.

• Enhanced reliability: Verify data integrity and consistency as

it �ows between modules.

• Reduced development costs: Fixing integration issues early

is cheaper than �xing system-wide problems later.

System Integration � Zhi Yan 26/30 � www.utbm.fr



UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Integration Testing

How?
• Top-Down Integration:

• Starts with high-level modules and progressively integrates
lower-level modules.

• Like assembling a tree, starting from the trunk and adding
branches.

• Bottom-Up Integration:
• Starts with low-level modules and integrates them into

increasingly complex subsystems.
• Like building a pyramid, starting with the base and adding

layers on top.

System Integration � Zhi Yan 27/30 � www.utbm.fr



UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Integration Testing

A few tips:

1 Plan your tests: De�ne clear objectives and identify modules

to be integrated.

2 Use mocks and stubs: Simulate dependencies to isolate

modules and control test environment.

3 Automate your tests: Use testing frameworks to streamline

the testing process and ensure repeatability.

4 Document your tests: Clearly record test cases, expected

results, and any assumptions made.

System Integration � Zhi Yan 28/30 � www.utbm.fr



UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Summary

• Software-hardware integration

• Continuous integration

• Version control

• Docker

• Integration testing

System Integration � Zhi Yan 29/30 � www.utbm.fr



UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

The end

Thank you for your attention!

Any questions?

System Integration � Zhi Yan 30/30 � www.utbm.fr


