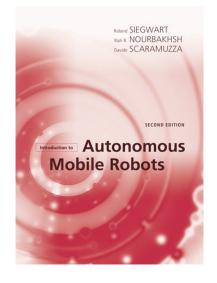


Locomotion

RO51 - Introduction to Mobile Robotics

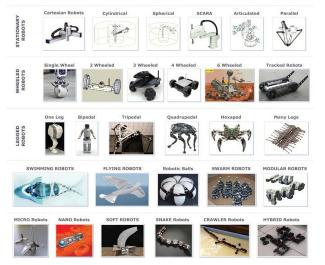
Zhi Yan March 27, 2024


https://yzrobot.github.io/

www.utbm.fr

Extended reading

• This lecture is organized according to the textbook Introduction to Autonomous Mobile Robots, Second Edition.



What is locomotion

- Locomotion is the act of moving from place to place.
 - Fundamentally speaking, no matter which kind of locomotion is adopted, a mobile robot needs to transport itself from one place to another.
- Locomotion relies on the physical interaction between the robot and its environment.
- Locomotion is concerned with the interaction forces, along with the mechanisms and actuators that generate them.

Types of locomotion

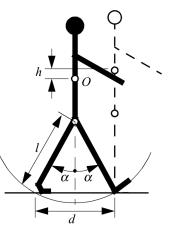
• Robots can roll, walk, fly, swim, and so forth.

Locomotion concepts

Principles found in nature

• On ground:

Type of motion		Resistance to motion	Basic kinematics of motion
Flow in a Channel		Hydrodynamic forces	Eddies
Crawl	@ <u>@@@@@</u> @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	Friction forces	
Sliding	T.	Friction forces	Transverse vibration
Running	SX?	Loss of kinetic energy	Oscillatory movement of a multi-link pendulum
Jumping	ST.	Loss of kinetic energy	Oscillatory movement of a multi-link pendulum
Walking	X	Gravitational forces	Rolling of a polygon (see figure 2.2)


Locomotion concepts

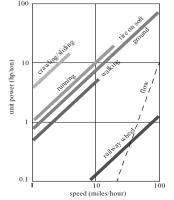
Principles found in nature

- Nature evolved a multitude of locomotion concepts
 - Adaptation to environmental characteristics
 - Adaptation to the perceived environment (e.g. size)
- However, concepts found in nature
 - Difficult to imitate technically
 - Do not employ wheels (nature never invented the wheel)
 - Sometimes imitate wheels (the motion of bipedal walking is close to rolling)
- Most technical systems today use wheels or caterpillars
 - Easy to control and show excellent performance on flat ground
- Legged locomotion is still mostly a research topic
 - But legs offer excellent mobility in rough environments (at the cost of power)

Locomotion concepts Walking or rolling?

- Bipedal (i.e. two legs) walking mechanism
 - not too far from real rolling when moving on flat ground
 - rolling of a polygon with side length equal to the length of the step (i.e. d)
 - the smaller the step gets, the more the polygon tends to a circle (i.e. wheel)

Locomotion concepts Walking or rolling?


- number of actuators
- structural complexity
- control expense
- energy efficient
 - terrain (flat, soft, rough, etc.)
 - Cost of transport:

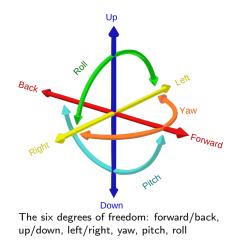
$$COT \triangleq \frac{E}{m \cdot g \cdot d} = \frac{P}{m \cdot g \cdot v}$$

$$\circ E = Energy, P = Power$$

$$\circ$$
 m = mass, g = std. gravity

- $\circ d = distance, v = speed$
- movement of the involved masses
 - walking/running includes up and down movement of center of gravity
 - some extra losses

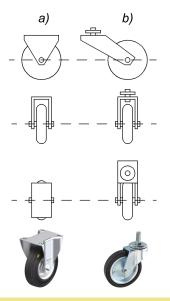
Specific power versus attainable speed of various locomotion mechanisms


Locomotion concepts

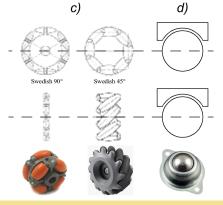
The most important issues

- Stability:
 - number of contact points
 - center of gravity
 - static/dynamic stabilization
 - inclination of terrain (e.g. sloping road)
- Characteristics of contact:
 - contact point or contact area
 - angle of contact
 - friction
- Type of environment:
 - structure
 - medium (e.g. water, air, soft or hard ground)

Locomotion concepts


 In physics, the degrees of freedom (DOF) of a mechanical system is the number of independent parameters that define its configuration or state.

- The wheel has been by far the most popular locomotion mechanism in mobile robotics.
 - Good efficiencies and relatively simple mechanical implementation.
- Even though wheels are the most appropriate solution for many applications, basic wheel layouts are limited to easy terrain.
 - Much work on adapting wheeled robots to hard terrain.
 - Motivation for work on legged robots.
- Three wheels are sufficient to guarantee stability.
 - Two-wheeled robots can also be stable, dynamically.
 - With more than three wheels a (flexible) suspension is required (to allow all wheels to maintain ground contact).
- Selection of wheels depends on the application.


- Balance is not a problem.
 - Instead, traction, stability, maneuverability, and control.
- Kinematic parameters come from type and configuration of wheels.
 - Rolling and/or steering.
 - Position relative to chassis.
- Kinematic constraints come from combining all the wheels rolling and steering constraints.
 - Wheels don't like to go sideways.
- => Discuss mobile robot kinematics in detail in the next lecture.

- Standard wheel: Two DOF; rotation around the (motorized) wheel axle and the contact point.
- Caster wheel: Three DOF; rotation around the wheel axle, the contact point and the castor axle.

Wheeled robots Wheel design

- Swedish/Mecanum wheel: Three DOF; rotation around the (motorized) wheel axle, around the rollers and around the contact point.
- Ball/Spherical wheel: Suspension technically not solved.

Wheeled robots Wheel design

- Sometimes the suspension system of small robots is replaced by soft rubber tires.
 - Require a more dynamic suspension from significantly uneven terrain.
- Bigger wheels allow to overcome higher obstacles.
 - Require higher torque or reductions in the gearbox.
- Most wheel configurations are nonholonomic (c.f. next slides).
 - Require high control effort.

Wheeled robots Wheel configurations

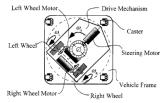
# of wheels	Arrangement	Description	# of wheels	Arrangement	Description
2		One steering wheel in the front, one traction wheel in the rear	3		Two connected traction wheels (differential) in rear, 1 steered free wheel in front
		Two-wheel differential drive with the center of mass (COM) below the axle			T
					Two free wheels in rear, 1 steered traction wheel in front
3		Two-wheel centered differen- tial drive with a third point of contact			Three motorized Swedish or spherical wheels arranged in a triangle; omnidirectional move- ment is possible
		Two independently driven wheels in the rear/front, 1 unpowered omnidirectional wheel in the front/rear			Three synchronously motorized and steered wheels; the orienta- tion is not controllable

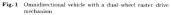
Wheeled robots Wheel configurations

# of wheels	Arrangement	Description	# of wheels	Arrangement	Description
4		Two motorized wheels in the rear, 2 steered wheels in the front; steering has to be different for the 2 wheels to avoid slipping/skidding.	4		Two-wheel differential drive with 2 additional points of con- tact
		Two motorized and steered wheels in the front, 2 free wheels in the rear; steering has to be different for the 2 wheels to avoid slipping/skidding.			Four motorized and steered castor wheels
		Four steered and motorized wheels	6		Two motorized and steered wheels aligned in center, 1 omnidirectional wheel at each corner
		Two traction wheels (differen- tial) in rear/front, 2 omnidirec- tional wheels in the front/rear			Two traction wheels (differen- tial) in center, 1 omnidirec- tional wheel at each corner
	12221 12221	Four omnidirectional wheels			
	17271 17271				

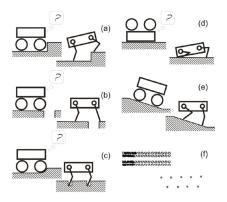
Wheeled robots

Some examples

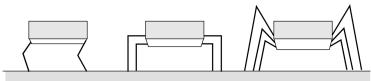



Wheeled robots

Some examples


Wheeled robots

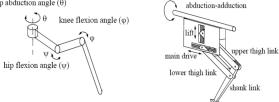
What about caterpillar robots?


Legged robots

- Legged systems can overcome many obstacles, that are not reachable by wheeled systems.
- But it is quite hard to achieve this since:
 - many DOFs must be controlled in a coordinated way (power and mechanical complexity);
 - the robot must see detailed elements of the terrain (perception).

Legged robots

- The fewer legs the more complicated locomotion becomes.
 - At least three legs are required for static stability.
- During walking some legs are lifted.
 - Losing stability?
- For static walking at least 6 legs are required.
 - Three of the legs are always in contact with the ground.

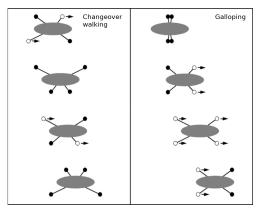

mammals two or four legs reptiles four legs insects six legs

- Legged robotics is a popular research field.
- Few industrial applications, but broad prospects.

Legged robots

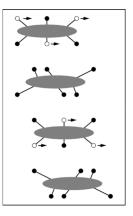
- A minimum of two DOF is required to move a leg forward.
 - A lift and a swing motion.
 - Sliding-free motion in more than one direction not possible.
- Three DOF for each leg in most cases (see pictured below).
- 4th DOF for the ankle joint (video).
 - Might improve walking and stability.
 - however, additional joint (DOF) increases the complexity of the design and especially of the locomotion control.

hip abduction angle (θ)



Legged robots Gaits

- The gait is characterized as the distinct sequence of *lift and release events* of the individual legs.
 - The number of possible gaits depends on the number of legs.
 - The number of possible events N for a walking machine with k legs is: $N = (2k 1)! \leftarrow \text{factorial}$
- For a biped walker (k = 2) the number of possible events N is: $N = (2k - 1)! = 3! = 3 \times 2 \times 1 = 6$
 - The 6 different events are: lift right leg / lift left leg / release right leg / release left leg / lift both legs together / release both legs together
- For a robot with 6 legs (hexapod) N is already: $N = 11! = 39\ 916\ 800$


Legged robots Gaits

• Most obvious natural gaits with 4 legs are dynamic.

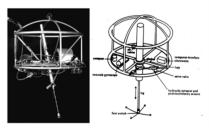
Legged robots Gaits

• Most obvious gait with 6 legs is static.

Legged robots Dynamic walking vs. Static walking

• Statically stable:

- Body weight supported by at least three legs.
- Even if all joints 'freeze' instantaneously, the robot will not fall.
- Safe, slow and inefficient.


• Dynamic walking:

- The robot will fall if not continuously moving.
- Less than three legs can be in ground contact.
- Fast, efficient and demanding for actuation and control. => (video)

Legged robots Examples: One leg

- MIT's 3D One-Leg Hopper robot (built in about 1983)
 - Pneumatic piston
 - Hydraulic leg "angle" orientation

Legged robots Examples: Two legs (Humanoid robots)

- ASIMO by Honda (Ver. 2011, the last version)
 - Weight: 48 kg, height: 130 cm
 - Speed 2.7 km/h (walking), 9.0 km/h (running)
 - Autonomy: $\sim 1~\text{hour}$

- Atlas by Boston Dynamics (Ver. 2016, current version)
 - Weight: 89 kg, height: 150 cm
 - Speed: up to 9.0 km/h
 - Autonomy: ~ 1 hour

Legged robots Fukushima – where no human should go

Legged robots Examples: Four legs

Legged robots Examples: Six legs

• Static stability during walking: easy to control

Figure: PhantomX AX Metal Hexapod MK-III Kit

Summary

- This lecture has looked at locomotion, one of the most fundamental aspects of robot design.
- Main distinction: wheeled or legged.
- Within each class there are a number of options: number of wheels/legs, types of wheel/legs (c.f. number of DOF).

The end

Thank you for your attention!

Any questions?