
1

Lane detection using Turtlebot3 Burger

Project for TO52
Weitao YAN

A2020

Course: TO52
Supervising teacher: Zhi YAN, Sihao DENG
Course teacher: Yassine RUICHEK
Dec, 2020

Abstract
The autonomous driving technology is a growing hotspot for engineers and scientists
around the world to work on. In this practical project, I did the configuration and
parameter tuning of the Turtlebot3 Burger based on ROS in order to detect lanes,
which is an essential part of a autonomous driving robot. The project mainly covers
the following things: camera intrinsic calibration, camera extrinsic calibration,
parameter tuning for lane detection and autonomous driving based on lane detection.

2

Table of contents
1. Introduction ..3

1.1 Hardware ...3
1.2 Software ...4

2. Technologies ..5
2.1 Brief presentation of ROS[1] ...5

2.1.1 Project architecture ..5
2.1.2 Package ..5
2.1.3 Communication framework ..6
2.1.4 Communication methods ..6
2.1.5 Visualization..7

2.2 Why camera calibration ...7
2.2.1 The 4 coordinate systems of a camera[2] ...7
2.2.2 Pinhole camera model ..8
2.2.3 Intrinsic and extrinsic parameters ...9
2.2.4 Camera distortion[7][8][9] .. 11

2.3 Camera Calibration: Zhang’s method .. 12
2.4 HSL color space.. 14

3. Project realization.. 15
3.1 Camera calibration .. 15

3.1.1 Basic parameters .. 15
3.1.2 Intrinsic calibration .. 15
3.1.3 Extrinsic calibration ... 17

3.2 HSL parameter tuning for lane detection ... 17
3.3 Autonomous driving with lane detection .. 19
3.4 Difficulties encountered .. 19

4. Conclusion ... 22
4.1. The limitation of the pinhole camera model.. 22
4.2. What I learned from the project ... 23
4.3. Appreciations .. 23

5. References ... 23

3

1. Introduction

A self-driving car is a car that can be driven with few or no people. The self-driving
car can sense its environment and navigate without human operation. Although fully
autonomous vehicles have not yet been fully commercialized, autonomous vehicles
have recently received great attention, largely due to the rapid development of
artificial intelligence (AI) technology.

Autonomous driving is a huge and complex project, involving many technologies. It
intensively uses technologies such as computers, modern sensing, information fusion,
communications, artificial intelligence and automatic control, and is a typical high-
tech complex. The key technologies of autonomous driving can be divided into four
parts: environment perception, behavior decision-making, path planning and motion
control. Let's briefly introduce the composition of autonomous driving technology
from both hardware and software aspects.

1.1 Hardware

 Radar and Lidar
The advantage of lidar is that it has a high range accuracy resolution and can have
a stable detection of physical dimensions. But the shortcomings are also obvious.
The most serious is that in engineering, although there is a solid-state lidar, the
life expectancy can not catch up with that of a vehicle. And the cost has not yet
met the requirements of the public market. In addition, although accurate distance
perception is his advantage, it is also his disadvantage in rain, snow, etc. For
example, it cannot correctly judge the attributes of objects.

Figure 1 LDS-01 Lidar in Turtlebot3 Burger

 Camera
Unlike lidar, the camera collects pixel information, which is similar to what the
human eye sees. Unlike humans, the human eye is a natural super intelligent
processor, which can easily recognize lanes, vehicles and pedestrians. While for
vehicles, pixel information is just nothing but numbers. The massive amount of

4

data must go through complex processes such as abstraction and reconstruction
using deep learning technology.
Since the perception of cameras is almost the same as that of humans, deep
learning algorithms are also used most in cameras. At present, the camera
technology of mass-produced cars is also very mature and low in cost, and the
main cost comes from software. Therefore, if the visual software does well, it can
be the king of autonomous driving. If the software does not do well, the camera is
a decoration. Although camera has the same problems as people, it can’t handle
darkness and glare well, but its resolution advantage and hidden information can
solve any problem theoretically. After all, we people also rely on vision.

Figure 2 Raspberry Pi Camera v2.1

In this project, I rely mainly on this camera to carry out all the lane detection
configurations.

1.2 Software

The software contains four layers: perception, fusion, decision-making, and
control.
First, the system collects information from the sensor, but after receiving the
information from the sensor, it will be discovered that not all information is
useful. Since the state of the sensor is not 100% effective, it is extremely
irresponsible for the subsequent decision to determine whether there is an
obstacle in front of it only based on the signal of a certain frame (maybe the
sensor has misdetected). Therefore, it is necessary to pre-process the information
to ensure that the obstacles in front of the vehicle always exist, rather than
passing by in a flash.
Decision-making refers to how to plan the action correctly after obtaining the
fused data. The plan includes longitudinal control and lateral control: longitudinal
control means speed control, which is when to accelerate and when to brake;
transverse control means behavior control, which is when to change lanes, when
to overtake, etc.

5

In this project, it is mainly the decision-making part that I concern. The decision,
such as turning left and turning right should be made according to lane
information extracted by the camera with delicate calibration.

2. Technologies

2.1 Brief presentation of ROS[1]

ROS, namely Robot Operating System, sounds very much like an operating system.
However, it is not. ROS is actually a middleware that connects the real system and the
robot programs. It has multiple operating system-like functionalities, such as hardware
abstraction, control of bottom layer devices, messaging between processes and package
management.
In ROS, a node is actually a process. ROS uses a distributed framework that can run
multiple processes simultaneously and provides the management and communication
between nodes.

2.1.1 Project architecture

 Catkin

Catkin is a ROS-customized compile and building system extended from CMake.
 Catkin workspace

Catkin workspace is the folder that manages all the packages. It is compiled using catkin.
The ‘src’ folder contains source code of packages. The ‘build’ folder contains cache of
Catkin/CMake and middle files for compiling. The ‘dev’ folder contains target files, say,
head files, link libraries and executable files.
All the work and programming things we do are situated in ‘src’ folder.
In ‘src’ folder, we can find many packages. A package is the basic compile unit in Catkin.

2.1.2 Package

A package contains one or multiple executable files(nodes). A package always contains
a ‘CMakeLists.txt’ file and a ‘package.xml’ file. The ‘CMakeLists.txt’ file defines
Catkin compile rules. The ‘package.xml’ file defines the attributes of the package.
We can program scripts, say, shell or Python, in a package. They are stored in the
‘scripts’ folder. Sometimes we also program in C++ whose head files are in ‘include’
folder and source files are in ‘src’ folder.
Some custom communication formats are also defined in the package, such as

6

message(msg), service(srv) and action(action).
A package also contains launch file(in ‘launch’ folder) and yaml file(in ‘config’ folder).
Launch file allows us to executes multiples nodes at the same time.

2.1.3 Communication framework

 master – the node manager

Each node registers at master before it starts. The master manages the
communication between nodes. This is why we need to enter ‘roscore’ every time
we start ROS because it starts master.

 node – a process in ROS

Node is a live instance of the executable file of a package.
Using ‘rosrun [pkg_name] [node_name]’ to start a node.
Using ‘rosnode list’ to list information of all current running nodes.
Using ‘roslaunch [pkg_name] [file_name.launch]’ to start master and multiple
nodes at the same time. The launch file defines the rule for nodes to start.

2.1.4 Communication methods

ROS mainly has Topic, Service, Parameter Service and Actionlib as its communication
methods.
 Topic

Using predefined topic to communicate between nodes. It uses publish-subscribe
method. Topic acts as a channel that the nodes can publish and subscribe. Topic is
an asynchronous method. Message is the data type defined for topic. It is stored in
‘.msg’ file.

 Service

It uses synchronous request-reply method. It only acts when it is requested. Service
is very useful in occasionally called tasks. Multiple clients requests one server. Srv
is the data type defined for service. It is stored in ‘*.srv’ file.

 Parameter Server

It maintains a dictionary that stores parameters.
 Action

A server-like communication method with status feedback. It is usually used in
time-consuming and preemptive tasks. Action is the data type defined for Action.
It is stored in ‘.action’ file.

7

2.1.5 Visualization

rqt is the visualization tool for ROS. It is based on Qt. It is very helpful for
understanding the communication framework of a ROS project.
Use ‘rqt_graph ’ to show the current communication framework. For example, what
nodes and topic are running, the message flow, etc.
Use ‘rqt_plot ’ to plot data. For example, the speed of robot or IMU data.
Use ‘rqt_console ’ to look up logs.

In a node graph(‘rqt_graph ’), a circle represents a node. The arrow between nodes
specifies the topic. When switching to ‘Node/Topics(all)’ mode, the rectangles
represents topics.

In ‘rqt_plot ’, we can monitor current robot value by specifying the topic name.

2.2 Why camera calibration

The camera model is the key to all future calibration algorithms. Only a thorough
understanding of that can we have a better understanding of future calibration
algorithms.

2.2.1 The 4 coordinate systems of a camera[2]

First, we must understand the relationship between the four plane coordinate systems
in the camera model.
In the camera model, a certain point in the three-dimensional world and its
corresponding pixel are obtained through the conversion of the coordinate system. Four
coordinate systems are involved in this process, namely the world coordinate system,
the camera coordinate system, the image coordinate system, and the pixel coordinate
system. The conversion process of the four coordinate systems will be described in
detail below.
 World is the world coordinate system, you can arbitrarily specify the xw axis and

yw axis, which is the coordinate system where the point P in the figure below is
located.

 Camera is the camera coordinate system, the origin is located in the pin hole O, the
z axis coincides with the optical axis, and the x axis and y axis are parallel to the
projection plane, which is the coordinate system XYZ in the figure below.

 Image is the image coordinate system, the origin is at the intersection of the optical
axis and the projection plane, and the x axis and y axis are parallel to the projection
plane, which is the coordinate system xyz in the figure below.

 Pixel is the pixel coordinate system. Seen from the pin hole to the projection
surface, the upper left corner of the projection surface is the origin, and the uv axis

8

coincides with the projection surface. The coordinate system and the image
coordinate system are in the same plane, but the origin is different.

2.2.2 Pinhole camera model

1The camera imaging process is actually the process of mapping the three-dimensional
points in the real three-dimensional space to the imaging plane (two-dimensional space).
You can simply use the pin hole imaging model to describe the process to understand
the process of space transformation from the three-dimensional space to the two-
dimensional image during the imaging process.

The camera can be abstracted into the simplest form: a small hole and an imaging plane.
The small hole is located between the imaging plane and the real three-dimensional
scene. Any light from the real world can only reach the imaging plane through the small

1 https://www.mathworks.com/help/vision/ug/camera-calibration.html

9

hole. Therefore, there is a correspondence between the imaging plane and the real three-
dimensional scene seen through the small hole, that is, there is a certain transformation
relationship between the two-dimensional image points in the image and the three-
dimensional points of the real three-dimensional world. Once this transformation
relationship is found, the two-dimensional point information in the image can be used
2to restore the three-dimensional information of the scene.[3]

Since cameras and objects can be placed at any position in the environment, it is
necessary to select a reference coordinate system in the environment to describe the
position of the camera, and use it to describe the position of any object in the
environment. This coordinate system is called the world coordinate system. The world
coordinate system is an imaginary coordinate system, used as a general reference, and
can be freely defined as required. Usually, the world coordinate system is defined to
coincide with the camera coordinate system of the camera.[4]

2.2.3 Intrinsic and extrinsic parameters

 Intrinsic parameters[5][6]
Consider the transform from image coordinate system to pixel coordinate system.
Since the image coordinate system and the pixel coordinate system are on the same
plane, the difference between the two lies in the position and unit of the coordinate
origin. The origin of the pixel coordinate system is at the upper left corner of the
image coordinate system, and the unit of the pixel coordinate system is pixels.

2 https://www.researchgate.net/figure/Pinhole-Camera-Model-ideal-projection-of-a-3D-object-on-a-
2D-image_fig1_326518096

10

So we can get the following equations:

where dx, dy represent the width and the height of a pixel in the pixel coordinate
system respectively and u0, v0 represent the shift of horizontal and vertical
coordinates of the origin from image coordinate system to pixel coordinate system.
The four parameters above are the intrinsic parameters.

 Extrinsic parameters[5][6]
Consider the transform from world coordinate system to camera coordinate
system, a process that includes rotation and translation.

For rotations, we have:

Rotation along z axis

11

R1, R2, R3 represent the rotation matrix for the rotations along z, x, y axis with

the angle θ, φ, ω respectively. Then we get R=R1*R2*R3 which is the overall

rotation matrix. Add it to a translation vector T:

Finally, we get the transform equation and the extrinsic parameters:

2.2.4 Camera distortion[7][8][9]

Distortion can generally be divided into: radial distortion, tangential distortion.
It is an offset to rectilinear projection. Generally speaking, straight-line projection
means that a straight line in the scene is projected onto the picture and remains as a
straight line. Distortion simply means that a straight line projected onto the picture
cannot be maintained as a straight line.
There are other types of distortion, but they are ignorable compared with radial
distortion and tangential distortion.

 Radial distortion
The radial distortion comes from the lens shape. The light passing through the edge of
the lens is prone to radial distortion. The farther the light is from the center of the lens,
the greater the distortion.
The image below shows distortion: From left to right, normal distortion, barrel
distortion, pincushion distortion.

12

Anti-distortion model:

x, y are the normalized image coordinates, which means the coordinate origin has been
moved to the principal point, and the pixel coordinates are divided by the focal length.
k1, k2, k3 are the radial distortion coefficients

 Tangential distortion
Tangential distortion comes from the entire camera assembly process. When the
camera sensor and the lens are not parallel, because there is an angle, when the
light passes through the lens to the image sensor, the imaging position changes.
Anti-distortion model:

x, y are the normalized image coordinates, which means the coordinate origin has
been moved to the principal point, and the pixel coordinates are divided by the
focal length. p1 and p2 are the tangential distortion coefficients.

2.3 Camera Calibration: Zhang’s method

In the pinhole camera model, as long as these 9 parameters (dx, dy, u0, v0, k1, k2, k3,
p1, p2) are determined, the pinhole camera model can be uniquely determined. This
process is called "camera calibration". The first four are called internal parameters, and
the last five are called distortion parameters. The distortion parameters are to
supplement the internal parameters. So once the camera structure is fixed, including the
lens structure and the focus distance, we can use these 9 parameters to approximate the
camera.[10]

13

For a camera with better quality, the tangential distortion is small and thus p1,p2 can be
ignored, and the radial distortion coefficient k3 can also be ignored, and only the two
parameters k1 and k2 are calculated. Zhang Zhengyou’s method[11] defaults to p1 and
p2 to 0 in the calibration.

 Zhang’s calibration model

Zhang Zhengyou calibration only considers radial distortion, not tangential
distortion, which means only k1 and k2 are included. The model can be summed
as follows:

where (u,v) and (u¯,v¯) represent the ideal and real pixel coordinate respectively
while (x,y) and (x¯,y¯) represent the ideal and real image coordinate respectively.

 Zhang’s calibration procedures
1. Print a checkerboard and paste it on a flat surface as a calibration object.
2. By adjusting the orientation of the calibration object or the camera, take photos
of the calibration object in different directions.
3. Extract the checkerboard corner points from the photo.
4. Estimate the five internal parameters and six external parameters under the
condition of ideal no distortion.
5. The least square method is used to estimate the distortion coefficient under the
actual radial distortion.
6. Maximum likelihood method, optimize estimation, improve estimation accuracy.

 Why checkerboard

The first major role of the calibration board is to determine the correspondence

14

between the object point and the image point. The principle used here is mainly
"perspective invariance." For example, if you look at a person up close and look at
him far away, although the size of his nose has changed, the perspective of yourself
has also changed, but the topology must be the same, you can't think of his nose as
a mouth.[10]
In the calibration board, the topological structure is printed, and the checkerboard
grid and dot grid are widely used. The reason why these two kinds of grids have
become mainstream is not only because their topological structure is clear and
uniform, but more importantly, the algorithm for detecting their topological
structure is simpler and more effective. The checkerboard detects the corner points,
as long as the gradient is calculated in the horizontal and vertical directions of the
captured checkerboard image.

2.4 HSL color space

In Turtlebot3 burger, the parameter tuning for lane detection use HSL color
space.
3HSL (hue, saturation, lightness) is an alternative representation of the RGB
model designed to more closely match the human vision perception.

3 https://fr.m.wikibooks.org/wiki/Fichier:Hsl-hsv_models_b.svg

15

3. Project realization

3.1 Camera calibration

3.1.1 Basic parameters

In this step, we adjust the basic parameters of the camera to make it capture clear images.
For example, the contrast, the sharpness, the saturation, the ISO and so on.

And save the parameters in the ‘camera.yaml’ file:

so that the next time the camera is triggered, it will use the tuned parameters from the
file.

3.1.2 Intrinsic calibration

In this step, I printed a checkerboard on A4 size paper and stick it on a big board. Then
I launch the intrinsic camera calibration and click the ‘calibration’ button. Next, I have
to adjust the board’s position and angle multiple times until the 3 bars in the program

16

interface turn green, which means the program have received enough information to
calibrate the intrinsic parameters.

17

3.1.3 Extrinsic calibration

The extrinsic camera calibration is quite straightforward. In order to detect the lanes as
far as possible, we should adjust the projection view of the camera by adjusting the
coordinates of the projection rectangle:

I also save the adjusted parameters into the local ‘projection.yaml’ file.

3.2 HSL parameter tuning for lane detection

By default, the Turtlebot3 burger detects lane by identifying the left yellow lane and the
right white lane on a gray or black ground. In order to the yellow and white color, we
have to tune the HSL parameters for the 2 colors:

18

After several adjustments, the blurry lanes become clearly identified:

Finally, I save the adjusted parameters into the local ‘lane.yaml’ file:

so that when the lane detection module is launched in action model, the lanes will be
detected using the values above.

19

3.3 Autonomous driving with lane detection

After having configured the parameters correctly above, follow several steps below to
run the Turtlebot3 burger with lane detection:
 Launch roscore on Remote PC.
 Trigger the camera on SBC.
 Run an intrinsic camera calibration launch file on Remote PC.
 Run an extrinsic camera calibration launch file on Remote PC.
 Run a lane detection launch file on Remote PC.
 Run a lane control launch file on Remote PC.
 Bring up the Turtlebot3 burger.
Then the lanes should be detected and the Turtlebot3 burger should start to run
following detected lanes.
The detected lanes can be shown by using the ‘rqt’ command:

3.4 Difficulties encountered

Although the intrinsic camera calibration should have been the most time-consuming
task of the entire project, I encountered a problem that is trickier. After following the
instructions above, the Turtlebot3 burger didn’t move after I typed the last command.
The following steps describes the means I took to solve the problem:
 I first checked the teleoperation function4 using remote PC keyboard. But it didn’t

work. No response from the 2 wheels. Also, the topic monitor could not detect the

4 https://emanual.robotis.com/docs/en/platform/turtlebot3/basic_operation/#teleoperation

20

2 wheels:

 Then I checked the wheels’ moving function using 2 push buttons on the OpenCR

board.5 Unfortunately, after following the instructions, the wheels didn’t move at
all.

 Having discussed with my supervising teacher, I reinstalled the firmware of

OpenCR. But that doesn’t solve the problem.

 By chance, I found a latest official video6 that gives me hint on how to test the
wheels whom are officially called ‘DYNAMIXEL’. But the wheels still didn’t

5 https://emanual.robotis.com/docs/en/platform/turtlebot3/opencr_setup/#opencr-setup
6https://www.youtube.com/watch?v=0_M0Da9SHDw&list=WL&index=1&t=131s&ab_channel=ROBOTISOp
enSourceTeam

21

move by uploading the source file ‘position_mode’.

 I had to test if the 2 DYNAMIXELs can be found in OpenCR. Otherwise, this
might be a hardware problem. Luckily, by uploading the ‘find_dynamixel’ file from
OpenCR package in Arduino IDE, I successfully detected the 2 DYNAMIXELs:

You can see very clearly that they are detected under the baud rate 1000000.

 So, I changed the baud rate from the default 57600 bps to 1000000 bps in the source
file ‘position_mode’.

I uploaded the modified source file ‘position_mode’ to OpenCR. One wheel can
move:

 In order to apply the 1000000 baud rate to both wheels, I changed the default baud
rate in source file ‘turtlebot3_core’ and uploaded it to the OpenCR:

22

 Now the robot’s 2 wheels are well configured. It can run with 2 wheels using the

configured lane detection module.

4. Conclusion

4.1. The limitation of the pinhole camera model

Although the pinhole imaging model fully considers the influence of the camera's
internal parameters on imaging, it does not consider another important part of the
imaging system, the lens. Commonly used lenses are ordinary lenses, wide-angle
lenses, fish-eye lenses, etc. In the field of driverless and visual slam, fish-eye lenses
and wide-angle lenses are used a lot, mainly because the angle of view is large, and
more information can be observed.[7]
Any lens has different degrees of distortion, and different types of lenses use
different distortion models. According to the physical characteristics of lens
manufacturing and imaging, ordinary lenses mainly consider radial distortion and
tangential distortion, and the distortion models can be approximated by
polynomials. For large wide-angle and fisheye lenses, the physical model of
ordinary lenses is no longer applicable.

23

4.2. What I learned from the project

By realizing this project, the most things I learned is about the camera, such as the
camera’s pinhole model, its intrinsic and extrinsic parameters, why we should calibrate
a camera, how to calibrate it and so on. I practiced the Zhang’s calibration method with
my own hands and had a intuitive experience.
Moreover, I also learned a lot about the basic concepts of ROS system, for instance, its
workspace structure, its communication methods, its modules and launch files and so
on.
Finally, by debugging the ‘DYNAMIXEL’ wheels, I had a contact with the lower-level
hardware configurations of OpenCR and Arduino IDE.
In conclusion, through this project, I learned a lot of the underlying knowledge related
to machine vision and autonomous driving. Such as camera, ROS system, and low-level
hardware debugging. Not only did I increase my knowledge in related fields, it also
enhanced my ability to analyze and solve problems on my own.

4.3. Appreciations

2020 is a difficult year because of the COVID-19 pandemic. During the Autumn
semester, we can hardly go to school due to the lockdown. Here I would like especially
thank Mr. YAN, my supervising teacher for the project, who spared time to
communicate with me to help solve the problems. Also, I would like thank Mr. DENG,
who helped me a lot in the final testing step.

5. References

[1] https://www.bilibili.com/video/BV1mJ411R7Ni
[2] https://www.guyuehome.com/7832
[3] https://www.cnblogs.com/wangguchangqing/p/8126333.html
[4] https://www.zhihu.com/question/45982671
[5] https://blog.csdn.net/lyq_12/article/details/83625339
[6] https://zhuanlan.zhihu.com/p/125006810
[7] https://zhuanlan.zhihu.com/p/87334006
[8] https://blog.csdn.net/lql0716/article/details/71973318
[9] https://blog.csdn.net/a083614/article/details/78579163
[10] https://zhuanlan.zhihu.com/p/30813733
[11] https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr98-71.pdf

https://www.bilibili.com/video/BV1mJ411R7Ni
https://www.guyuehome.com/7832
https://www.cnblogs.com/wangguchangqing/p/8126333.html
https://www.zhihu.com/question/45982671
https://blog.csdn.net/lyq_12/article/details/83625339
https://zhuanlan.zhihu.com/p/125006810
https://zhuanlan.zhihu.com/p/87334006
https://blog.csdn.net/lql0716/article/details/71973318
https://blog.csdn.net/a083614/article/details/78579163
https://zhuanlan.zhihu.com/p/30813733
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr98-71.pdf

	1. Introduction
	1.1 Hardware
	1.2 Software

	2. Technologies
	2.
	2.1 Brief presentation of ROS[1]
	2.1.1 Project architecture
	2.1.2 Package
	2.1.3 Communication framework
	2.1.4 Communication methods
	2.1.5 Visualization

	2.2 Why camera calibration
	2.2.1 The 4 coordinate systems of a camera[2]
	2.2.2 Pinhole camera model
	2.2.3 Intrinsic and extrinsic parameters
	2.2.4 Camera distortion[7][8][9]

	2.3 Camera Calibration: Zhang’s method
	2.4 HSL color space

	3. Project realization
	3.
	3.1 Camera calibration
	3.1.1 Basic parameters
	3.1.2 Intrinsic calibration
	3.1.3 Extrinsic calibration

	3.2 HSL parameter tuning for lane detection
	3.3 Autonomous driving with lane detection
	3.4 Difficulties encountered

	4. Conclusion
	4.1. The limitation of the pinhole camera model
	4.2. What I learned from the project
	4.3. Appreciations

	5. References

