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Introduction 

 

“Simultaneous localization and mapping (SLAM) and application for 

autonomous vehicle” is about that it’s hoped that the robot will start from an 

unknown location in an unknow environment, locate its own position and 

posture repeatedly observing map features (such as corners, columns, etc.) 

during the course of the autonomous movement in a vehicle, and then builds 

the map incrementally according to its own position so as to achieve 

simultaneous positioning, with the way to achieve the purpose of map 

construction. 

 

 

⚫ Introduction of SLAM 

 

In robotic mapping and navigation, simultaneous localization and 

mapping (SLAM) which also known as CML (Concurrent Mapping and 

Localization) is the computational problem of constructing or updating a 

map of an unknown environment while simultaneously keeping track of 

an agent's location within it. For now, there are several algorithms known 

for solving it, at least approximately, in tractable time for certain 

environments. Popular approximate solution methods include the 

particle filter, extended Kalman filter, and GraphSLAM.  

 

Considering the part of operation, there are two main problem in this 

topic, mapping: how the environment looks like and simultaneous 

localization: how the robot locates real-time itself. The core part of map 

construction is the expression of the environment and the interpretation 

of sensor data, and robot by recording information acquired in some form 

of perception, compares with current perception results to support the 

evaluation of the positioning of reality. And under the error and noise 

conditions, the complexity of positioning and map construction does not 

support the simultaneous solution of both, so it should bind both 

processes in a loop to support both parties to obtain a continuous 

solution in their respective processes, make the mutual iterative 

feedback in different processes in order to improve the continuous 

solution of both parties. 

 

And for the part of technology, as mentioned above, it’s about iterative 

mathematically to solve the problem of error and noise of environment 

and errors in iterations which all those errors will cumulative overlay, so 

the techniques of image matching methods or loop closure detection 

https://en.wikipedia.org/wiki/Mobile_robot_navigation


methods and algorithms of Kalman filtering, particle filtering and scan 

matching data ranges were introduced. 

 

 

⚫ SLAM research status 

 

In the domain of SLAM, there are two main types: Visual SLAM whose 

sensor are cameras and Lidar SLAM whose sensor are lidar transmitter 

and receivers.  

 

SLAM systems become consumer products: Google Project Tango, 

Dyson 360 Eye among others, Autonomous Vehicles, Microsoft 

Hololens project etc. Some of the most important SLAM groups are now 

turning their attention to other problem domains: for instance, Prof. 

Andrew Davison at Imperial College London who now works more on 

scene understanding and robotic manipulation problems and Prof. 

Wolfram Burgard at University of Freiburg who is working on all sorts of 

miscellaneous problems. Some other leading labs of yester-years like 

those at University of Zaragoza seem to continue to work on SLAM, but 

the work is more focused on building systems like ORB-SLAM that 

integrate already existing ideas. 

 

With different usage of SLAM algorithms and SLAM types, that are 

tailored to the available resources, hence not aimed at perfection, but at 

operational compliance. Published approaches are employed in self-

driving cars, unmanned aerial vehicles, autonomous underwater 

vehicles, planetary rovers, newer domestic robots and even inside the 

human body. 

 

The future development trend of SLAM has two major categories: First, 

it is toward lightweight and miniaturization, allowing SLAM to operate 

well on small devices such as embedded devices or mobile phones, and 

then considering it as an application of the underlying functions. After all, 

in most occasions, our real goal is to realize the functions of robots, 

AR/VR devices, such as sports, navigation, teaching, and entertainment, 

and SLAM is to provide its own position estimate for upper-level 

applications. In these applications, we do not want SLAM to occupy all 

computing resources, so there is a strong demand for SLAM's 

miniaturization and lightweight. On the other hand, high-performance 

computing equipment is used to achieve precise 3D reconstruction and 

scene understanding. In these applications, our goal is to reconstruct the 

scene perfectly, and there is no limit to the portability of computing 

resources and devices. 



Projects choices  

 

From all of the existing projects on the website of OpenSLAM, I choice two 

projects to carry out my projects: Gmapping in Lidar SLAM and RBGD-SLAM 

in visual SLAM. 

 

 

⚫ Gmapping  

 

 

Gmapping is a 2D Lidar SLAM with the algorithm RBPF (Rao-

Blackwellized particle filter) which is highly to learn grid maps from laser 

range data, the algorithm of scan-match to locate the position of robot 

and the method of gradient descent.  

 

Gmapping uses RBPF as its algorithm, as a kind of PF (Particle Filter) 

algorithm, comparing to the other algorithms used in SLAM projects, like 

KF (Kalman Filter), EKF (Extended Kalman Filter), UKF (unscented 

Kalman Filter), IEKF (Iterated Extended Kalman Filter) etc. PF has a high 

accuracy in a low dimensional situation. 

 

And following are the comparison between these algorithm: 

 

1. PF (Particle Filter)  

 

PF uses the method of describing the distribution with a large 

number of sampling points, it uses Sequential Monte Carlo to 

collect sampling points every moment, it uses the loop of 

sampling—calculate weights—re-sampling: 

 

 
 

 



The more particles that match the observation, the more weights 

they have, and the larger the weight, the easier it will be sampled. 

 

PF updates the probability of each particle by comparing the 

difference between the observation value of each particle and the 

predicted value of the model. 

 

Motion equation:  

Observation equation:  

nx: status, nv: dimension of noise vector during movement, 

ny: observation value, nn: dimension of noise vector during observation 

 

With Bayes’ theorem, to build credibility density function equation 

and initial. The probability density function can be recursively 

calculated using the two steps of “prediction” and “update”. 

 

Prediction: PF considers the probability density function at k-1 

that it’s known:  

 
 

The status transition model is assumed to be a first-order Markov 

process, and the status of time k-1 is determined only by minute 

k. ,  

 

Update: for observation value: yk, PF uses previous posteriori 

probability to calculate the next posteriori probability. 

 ->  

 

PF can get observation equation:  

 

 



Sequential Importance Sampling: In each recursive process, it 

calculates the weight of the next sample from the weight of the 

previous sample, and approximate it with weighted average, it 

can get the weights equation:  with q(x) 

important density. After breaking down important density as 

，then it can 

get the weights recursive expression 

. 

 

Resampling: Sequential Importance Sampling will cause 

degeneracy problem that it will waste lots of calculation in useless 

particles because only a small number of particles have more 

weights after several recursions. So “Effective number of particles” 

is defined as , and we can set a 

threshold, when effective number of particles is less than this 

threshold, do resampling to avoid degeneracy problem. 

 

 

 

2. KF (Kalman Filter)  

 

KF uses Linear Gaussian system, in a Linear Gaussian system, 

the motion equations and observation equation are linear, and the 

two noise terms obey the zero-mean Gaussian distribution, after 

linear transformation, Gaussian distribution is still Gaussian 

distribution. With Bayes’ theorem, to calculate the posterior 

probability distribution of x and get the results. Algorithm of KF 

considers all the environment and situation as Linear Gaussian 

system. But the systems in reality are not linear, status and noise 



are not distributed as Gaussian distribution, so it won’t be very 

accurate about the results. 

 

Status estimation of discrete-time systems: 

 
Among them, xk: status at time k, f(x): motion equation, u: input, 

w: noise input, g(x): observation equation, y: observation data, n: 

observation noise. 

 

With odometer and sensor (lidar sensor in Gmapping) in 

robot, here are the motion equation:  

and observation equation: . 

 

Linear system: 

 
 

Among them, Qk, Rk are the covariance matrix of two noise, A, C 

are stochastic matrix and observation matrix. 

 

With Bayes’ theorem, to calculate the MAP (maximize a 

posteriori probability) estimate about x, 

 
 

Finally MAP estimate is:

 



by recursively solving this equation with matrix, here are the 

results: 

 

 and  are prediction equations by last moment,  is 

Kalman Gain,  and  are correction equation. 

 

 

3. EKF (Extended Kalman Filter) 

 

KF considers that the system is NLNG (non-linear non-Gaussian), 

so after non-linear transformation, Gaussian distribution is no 

longer Gaussian distribution, EKF uses the way of approximation 

to approach the results, it uses Gaussian distribution to 

approximate this situation and linearizate the system around the 

operation points. But there are lots of problems that will make 

errors when approximation.  

 

4. IEKF (Iterated EKF) 

 

In order to solve the one of the problem of EKF: the operation 

point is an estimated mean but not real mean of the input status 

by linearizing operation points. So IEKF approximate the 

estimated mean by calculating EKF again with the operation point 

that EKF offers, to get another operation point at the same 

moment, by iterating calculating until this operation point change 

is small enough. 

 

5. UKF (unscented Kalman Filter) 

 

In order to solve the one of the problem of EKF: EKF estimates 

the mean of nonlinear output with linear system, the same as 

calculating covariance, so the expectations are not real. So, UKF 

approximates the situation NLNG with Gaussian distribution after 

choosing a point as operation point by distributing the sigma 

points. Because the operation points in EKF are not accurate, so 



UKF choices some sample points as Sigma Points, with Gaussian 

distribution after mapping all the Sigma Points, by this way to 

approach the real results. 

 

 

So, comparing all these algorithms, I think PF (Particle Filter) calculates 

the situation without adding parameters to calculate, so it can avoid a lot 

of errors during calculation. But there is a big problem: the number of 

particles required for sampling, exponentially increasing with the 

distribution. However, it will require a lot of calculation in describing the 

distribution. Then PF can only solve the situation in a low dimension 

environment. 

But for RBPF, it introduces the adaptive techniques to reduce the 

number of particles in a Rao- Blackwellized particle filter for learning grid 

maps. We propose an approach to compute an accurate proposal 

distribution taking into account not only the movement of the robot but 

also the most recent observation. This drastically decrease the 

uncertainty about the robot's pose in the prediction step of the filter. 

Furthermore, we apply an approach to selectively carry out re-sampling 

operations which seriously reduces the problem of particle depletion. 

 

 

⚫ RGBD-SLAM 

 

 

RGBDSLAM allows to quickly acquire colored 3D models of objects and 

indoor scenes with a hand-held Kinect-style camera. It provides a SLAM 

front-end based on visual features s.a. SURF or SIFT to match pairs of 

acquired images and uses RANSAC to robustly estimate the 3D 

transformation between them. The resulting camera pose graph is then 



optimized with the SLAM back-end HOG-Man. To achieve online 

processing, the current image is matched only versus a subset of the 

previous images. Subsequently, it constructs a graph whose nodes 

correspond to camera views and whose edges correspond to the 

estimated 3D transformations. The graph is then optimized with HOG-

Man to reduce the accumulated pose errors. 

 

 

1. Algorithm: Nonlinear Optimization 

 

As a visual SLAM project, it uses the algorithm of nonlinear 

optimization, it calculates MAP (maximize a posteriori probability) 

as well, it makes errors equation and adds it into motion equation 

and observation equation. By calculating, it just considers that 

noise is satisfied with Gaussian distribution, then optimize it by 

using gradient descent optimization algorithm to calculate the 

results from initial.  

 

 

 

Comparing to algorithm of filters, it can consider the constraints 

in entire trajectory at a time, its linearization also considers to the 

entire trajectory. 

 

 

 



 

2. Front end: Depth camera 

 

RGBD uses Kinect v2 as the sensor of front-end, Kinect v2 carries 

a depth camera, one RGB color camera, one infrared transmitter 

and a depth sensor, RGB color camera is for collecting the 

images, and the combination of infrared transmitter and a depth 

sensor, is for collecting the depth (distance) between sensor and 

aims. This depth camera can collect depth maps that contains 

information relating to the distance of surfaces of scene objects 

from a viewpoint. Depth map can be calculated as point cloud 

data after coordinate conversion. 

 

 
 

 

3. Front end: TOF (Time of Flight) 

 

Camera measure the phase-delay of transmitted and reflected IR 

signals, and then calculate the distance from each sensor pixel to 

the target object.  

  



The delay phase difference td is calculated by the relationship of 

the four charge values. There is a 90-degree phase delay 

between these four phase control signals.  

 
Q1 to Q4 represent the amount of electric charge for the control 

signals C1 to C4, the corresponding distance can then be 

calculated: , c: the speed of light, f: signal 

frequency. 

 

 
 

The operating range is between 0.8 meters to 3.5 meters, the 

spatial resolution is 3mm at 2 meters distance, and the depth 

resolution is 10mm at 2 meters distance. The FOV is 57×43 (HxV) 

degrees. 

 

It compares to other technologies, TOF is good at the 

performance of anti-interference and it offers wider viewing angle 

with middle accuracy. 

 

4. Closed-loop detection 

 

If the back-end like G2O, to do every calculation, the amount of 

data is too large to run fluently, so closed-loop detection can well 

reduce this problem, according to the appearance of a new image, 

see if it is similar to the previous key frame, it can also avoid the 

errors during the course of SLAM. 



  

 
 

 

Project realization  

 

⚫ Gmapping 

 

1. Simulation environment: 

 

Operation system: Ubuntu 16.04  

Ros version: Kinetic 

Gazebo version: 7.0 

Simulation Robot: Turtlebot 

 

2. Preparation: 

 

Install the ROS full version kinetic, following the tutorial in 

website ROS.org, and ROS kinetic includes Gazebo 7.0 already; 

Install some components of ROS-Gazebo: “ros-kinetic-gazebo-

ros-pkgs ros-kinetic-gazebo-ros-control”; 

Install model package of Gazebo; 

Install related packages of turtlebot: “ros-kinetic-turtlebot-*”; 

 

3. Simulation demo 

 

1) Launch Gazebo, load turtlebot and environment model: 

“roslaunch turtlebot_gazebo turtlebot_world.launch”; 



 

 

2) Launch keyboard control node to control turtlebot: 

“roslaunch turtlebot_teleop keyboard_teleop.launch --

screen”; 

 

 

 

3) Launch Gmapping: “roslaunch turtlebot_gazebo 

gmapping_demo.launch”; 

 



 

 

4) Launch Rviz to observe the map building process: 

“roslaunch turtlebot_rviz_launchers view_navigation.launch”; 

 

 

 

 

 

 



⚫ RGBDSLAM 

 

1. Simulation environment: 

 

Operation system: Ubuntu 16.04  

Ros version: Kinetic 

Other packages: G2O, RGBDSLAM package 

WorkStation: calkin_ws 

Dataset: rgbd_dataset freburg1_xyz.bag 

 

2. Preparation: 

 

Install the ROS full version kinetic, following the tutorial in 

website ROS.org; 

Install RGBDSLAM in website ROS.org which relates to GitHub 

(met a problem about version of c++ standard, solved by adding 

set(CMAKE_CXX_FLAGS "-std=c++11") in file CMakeLists.txt) 

Install G2O in website ROS.org which relates to GitHub 

Install the independencies about G2O and RGBDSLAM 

Install a dataset: rgbd_dataset freburg1_xyz 

 

3. Simulation demo 

 

When I want to launch rgbdslam with “roslaunch rgbdslam 

rgbdslam.launch”, there are the errors of following picture: 

 

 

 



Errors don’t show any information and error message about it, 

not log file to trace. 

Plan to by reinstall package RGBDSLAM, but without success. 

Still ongoing to solve this problem. 

 

For depth map (depth image): with the dataset I download: 

rgbd_dataset freburg1_xyz.bag  

roscore 

rosbag play rgbd_dataset freburg1_xyz.bag 

 

and open rviz: rosrun rviz rviz 

 

 

 



Conclusion 

 

During the period of this project, I do two sous-projects: Gmapping and 

RGBDSLAM that makes me learn SLAM step by step from knowing nothing to 

be familiar with SLAM. When I do these two projects, there are some 

problems all the time, some are easy to solve and some problems takes a lot 

of time doing research.  

I think there is still a lot of space for development in the domain of SLAM 

about optimization of algorithms or materials both in front-end and back-end 

parts. 

At last, I want to thanks the helps that mister RUICHEK and mister YAN give 

me to advance my project.  
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