

Simultaneous localization

and mapping (SLAM) and

application for autonomous

vehicle

Student: Teacher:

Yutian ZHANG Yassine RUICHEK

 Zhi YAN

Summary

Introduction ... 2

Projects choices .. 4

Project realization ... 13

Conclusion .. 18

Annex ... 18

Introduction

“Simultaneous localization and mapping (SLAM) and application for

autonomous vehicle” is about that it’s hoped that the robot will start from an

unknown location in an unknow environment, locate its own position and

posture repeatedly observing map features (such as corners, columns, etc.)

during the course of the autonomous movement in a vehicle, and then builds

the map incrementally according to its own position so as to achieve

simultaneous positioning, with the way to achieve the purpose of map

construction.

⚫ Introduction of SLAM

In robotic mapping and navigation, simultaneous localization and

mapping (SLAM) which also known as CML (Concurrent Mapping and

Localization) is the computational problem of constructing or updating a

map of an unknown environment while simultaneously keeping track of

an agent's location within it. For now, there are several algorithms known

for solving it, at least approximately, in tractable time for certain

environments. Popular approximate solution methods include the

particle filter, extended Kalman filter, and GraphSLAM.

Considering the part of operation, there are two main problem in this

topic, mapping: how the environment looks like and simultaneous

localization: how the robot locates real-time itself. The core part of map

construction is the expression of the environment and the interpretation

of sensor data, and robot by recording information acquired in some form

of perception, compares with current perception results to support the

evaluation of the positioning of reality. And under the error and noise

conditions, the complexity of positioning and map construction does not

support the simultaneous solution of both, so it should bind both

processes in a loop to support both parties to obtain a continuous

solution in their respective processes, make the mutual iterative

feedback in different processes in order to improve the continuous

solution of both parties.

And for the part of technology, as mentioned above, it’s about iterative

mathematically to solve the problem of error and noise of environment

and errors in iterations which all those errors will cumulative overlay, so

the techniques of image matching methods or loop closure detection

https://en.wikipedia.org/wiki/Mobile_robot_navigation

methods and algorithms of Kalman filtering, particle filtering and scan

matching data ranges were introduced.

⚫ SLAM research status

In the domain of SLAM, there are two main types: Visual SLAM whose

sensor are cameras and Lidar SLAM whose sensor are lidar transmitter

and receivers.

SLAM systems become consumer products: Google Project Tango,

Dyson 360 Eye among others, Autonomous Vehicles, Microsoft

Hololens project etc. Some of the most important SLAM groups are now

turning their attention to other problem domains: for instance, Prof.

Andrew Davison at Imperial College London who now works more on

scene understanding and robotic manipulation problems and Prof.

Wolfram Burgard at University of Freiburg who is working on all sorts of

miscellaneous problems. Some other leading labs of yester-years like

those at University of Zaragoza seem to continue to work on SLAM, but

the work is more focused on building systems like ORB-SLAM that

integrate already existing ideas.

With different usage of SLAM algorithms and SLAM types, that are

tailored to the available resources, hence not aimed at perfection, but at

operational compliance. Published approaches are employed in self-

driving cars, unmanned aerial vehicles, autonomous underwater

vehicles, planetary rovers, newer domestic robots and even inside the

human body.

The future development trend of SLAM has two major categories: First,

it is toward lightweight and miniaturization, allowing SLAM to operate

well on small devices such as embedded devices or mobile phones, and

then considering it as an application of the underlying functions. After all,

in most occasions, our real goal is to realize the functions of robots,

AR/VR devices, such as sports, navigation, teaching, and entertainment,

and SLAM is to provide its own position estimate for upper-level

applications. In these applications, we do not want SLAM to occupy all

computing resources, so there is a strong demand for SLAM's

miniaturization and lightweight. On the other hand, high-performance

computing equipment is used to achieve precise 3D reconstruction and

scene understanding. In these applications, our goal is to reconstruct the

scene perfectly, and there is no limit to the portability of computing

resources and devices.

Projects choices

From all of the existing projects on the website of OpenSLAM, I choice two

projects to carry out my projects: Gmapping in Lidar SLAM and RBGD-SLAM

in visual SLAM.

⚫ Gmapping

Gmapping is a 2D Lidar SLAM with the algorithm RBPF (Rao-

Blackwellized particle filter) which is highly to learn grid maps from laser

range data, the algorithm of scan-match to locate the position of robot

and the method of gradient descent.

Gmapping uses RBPF as its algorithm, as a kind of PF (Particle Filter)

algorithm, comparing to the other algorithms used in SLAM projects, like

KF (Kalman Filter), EKF (Extended Kalman Filter), UKF (unscented

Kalman Filter), IEKF (Iterated Extended Kalman Filter) etc. PF has a high

accuracy in a low dimensional situation.

And following are the comparison between these algorithm:

1. PF (Particle Filter)

PF uses the method of describing the distribution with a large

number of sampling points, it uses Sequential Monte Carlo to

collect sampling points every moment, it uses the loop of

sampling—calculate weights—re-sampling:

The more particles that match the observation, the more weights

they have, and the larger the weight, the easier it will be sampled.

PF updates the probability of each particle by comparing the

difference between the observation value of each particle and the

predicted value of the model.

Motion equation:

Observation equation:

nx: status, nv: dimension of noise vector during movement,

ny: observation value, nn: dimension of noise vector during observation

With Bayes’ theorem, to build credibility density function equation

and initial. The probability density function can be recursively

calculated using the two steps of “prediction” and “update”.

Prediction: PF considers the probability density function at k-1

that it’s known:

The status transition model is assumed to be a first-order Markov

process, and the status of time k-1 is determined only by minute

k. ,

Update: for observation value: yk, PF uses previous posteriori

probability to calculate the next posteriori probability.

 ->

PF can get observation equation:

Sequential Importance Sampling: In each recursive process, it

calculates the weight of the next sample from the weight of the

previous sample, and approximate it with weighted average, it

can get the weights equation: with q(x)

important density. After breaking down important density as

，then it can

get the weights recursive expression

.

Resampling: Sequential Importance Sampling will cause

degeneracy problem that it will waste lots of calculation in useless

particles because only a small number of particles have more

weights after several recursions. So “Effective number of particles”

is defined as , and we can set a

threshold, when effective number of particles is less than this

threshold, do resampling to avoid degeneracy problem.

2. KF (Kalman Filter)

KF uses Linear Gaussian system, in a Linear Gaussian system,

the motion equations and observation equation are linear, and the

two noise terms obey the zero-mean Gaussian distribution, after

linear transformation, Gaussian distribution is still Gaussian

distribution. With Bayes’ theorem, to calculate the posterior

probability distribution of x and get the results. Algorithm of KF

considers all the environment and situation as Linear Gaussian

system. But the systems in reality are not linear, status and noise

are not distributed as Gaussian distribution, so it won’t be very

accurate about the results.

Status estimation of discrete-time systems:

Among them, xk: status at time k, f(x): motion equation, u: input,

w: noise input, g(x): observation equation, y: observation data, n:

observation noise.

With odometer and sensor (lidar sensor in Gmapping) in

robot, here are the motion equation:

and observation equation: .

Linear system:

Among them, Qk, Rk are the covariance matrix of two noise, A, C

are stochastic matrix and observation matrix.

With Bayes’ theorem, to calculate the MAP (maximize a

posteriori probability) estimate about x,

Finally MAP estimate is:

by recursively solving this equation with matrix, here are the

results:

 and are prediction equations by last moment, is

Kalman Gain, and are correction equation.

3. EKF (Extended Kalman Filter)

KF considers that the system is NLNG (non-linear non-Gaussian),

so after non-linear transformation, Gaussian distribution is no

longer Gaussian distribution, EKF uses the way of approximation

to approach the results, it uses Gaussian distribution to

approximate this situation and linearizate the system around the

operation points. But there are lots of problems that will make

errors when approximation.

4. IEKF (Iterated EKF)

In order to solve the one of the problem of EKF: the operation

point is an estimated mean but not real mean of the input status

by linearizing operation points. So IEKF approximate the

estimated mean by calculating EKF again with the operation point

that EKF offers, to get another operation point at the same

moment, by iterating calculating until this operation point change

is small enough.

5. UKF (unscented Kalman Filter)

In order to solve the one of the problem of EKF: EKF estimates

the mean of nonlinear output with linear system, the same as

calculating covariance, so the expectations are not real. So, UKF

approximates the situation NLNG with Gaussian distribution after

choosing a point as operation point by distributing the sigma

points. Because the operation points in EKF are not accurate, so

UKF choices some sample points as Sigma Points, with Gaussian

distribution after mapping all the Sigma Points, by this way to

approach the real results.

So, comparing all these algorithms, I think PF (Particle Filter) calculates

the situation without adding parameters to calculate, so it can avoid a lot

of errors during calculation. But there is a big problem: the number of

particles required for sampling, exponentially increasing with the

distribution. However, it will require a lot of calculation in describing the

distribution. Then PF can only solve the situation in a low dimension

environment.

But for RBPF, it introduces the adaptive techniques to reduce the

number of particles in a Rao- Blackwellized particle filter for learning grid

maps. We propose an approach to compute an accurate proposal

distribution taking into account not only the movement of the robot but

also the most recent observation. This drastically decrease the

uncertainty about the robot's pose in the prediction step of the filter.

Furthermore, we apply an approach to selectively carry out re-sampling

operations which seriously reduces the problem of particle depletion.

⚫ RGBD-SLAM

RGBDSLAM allows to quickly acquire colored 3D models of objects and

indoor scenes with a hand-held Kinect-style camera. It provides a SLAM

front-end based on visual features s.a. SURF or SIFT to match pairs of

acquired images and uses RANSAC to robustly estimate the 3D

transformation between them. The resulting camera pose graph is then

optimized with the SLAM back-end HOG-Man. To achieve online

processing, the current image is matched only versus a subset of the

previous images. Subsequently, it constructs a graph whose nodes

correspond to camera views and whose edges correspond to the

estimated 3D transformations. The graph is then optimized with HOG-

Man to reduce the accumulated pose errors.

1. Algorithm: Nonlinear Optimization

As a visual SLAM project, it uses the algorithm of nonlinear

optimization, it calculates MAP (maximize a posteriori probability)

as well, it makes errors equation and adds it into motion equation

and observation equation. By calculating, it just considers that

noise is satisfied with Gaussian distribution, then optimize it by

using gradient descent optimization algorithm to calculate the

results from initial.

Comparing to algorithm of filters, it can consider the constraints

in entire trajectory at a time, its linearization also considers to the

entire trajectory.

2. Front end: Depth camera

RGBD uses Kinect v2 as the sensor of front-end, Kinect v2 carries

a depth camera, one RGB color camera, one infrared transmitter

and a depth sensor, RGB color camera is for collecting the

images, and the combination of infrared transmitter and a depth

sensor, is for collecting the depth (distance) between sensor and

aims. This depth camera can collect depth maps that contains

information relating to the distance of surfaces of scene objects

from a viewpoint. Depth map can be calculated as point cloud

data after coordinate conversion.

3. Front end: TOF (Time of Flight)

Camera measure the phase-delay of transmitted and reflected IR

signals, and then calculate the distance from each sensor pixel to

the target object.

The delay phase difference td is calculated by the relationship of

the four charge values. There is a 90-degree phase delay

between these four phase control signals.

Q1 to Q4 represent the amount of electric charge for the control

signals C1 to C4, the corresponding distance can then be

calculated: , c: the speed of light, f: signal

frequency.

The operating range is between 0.8 meters to 3.5 meters, the

spatial resolution is 3mm at 2 meters distance, and the depth

resolution is 10mm at 2 meters distance. The FOV is 57×43 (HxV)

degrees.

It compares to other technologies, TOF is good at the

performance of anti-interference and it offers wider viewing angle

with middle accuracy.

4. Closed-loop detection

If the back-end like G2O, to do every calculation, the amount of

data is too large to run fluently, so closed-loop detection can well

reduce this problem, according to the appearance of a new image,

see if it is similar to the previous key frame, it can also avoid the

errors during the course of SLAM.

Project realization

⚫ Gmapping

1. Simulation environment:

Operation system: Ubuntu 16.04

Ros version: Kinetic

Gazebo version: 7.0

Simulation Robot: Turtlebot

2. Preparation:

Install the ROS full version kinetic, following the tutorial in

website ROS.org, and ROS kinetic includes Gazebo 7.0 already;

Install some components of ROS-Gazebo: “ros-kinetic-gazebo-

ros-pkgs ros-kinetic-gazebo-ros-control”;

Install model package of Gazebo;

Install related packages of turtlebot: “ros-kinetic-turtlebot-*”;

3. Simulation demo

1) Launch Gazebo, load turtlebot and environment model:

“roslaunch turtlebot_gazebo turtlebot_world.launch”;

2) Launch keyboard control node to control turtlebot:

“roslaunch turtlebot_teleop keyboard_teleop.launch --

screen”;

3) Launch Gmapping: “roslaunch turtlebot_gazebo

gmapping_demo.launch”;

4) Launch Rviz to observe the map building process:

“roslaunch turtlebot_rviz_launchers view_navigation.launch”;

⚫ RGBDSLAM

1. Simulation environment:

Operation system: Ubuntu 16.04

Ros version: Kinetic

Other packages: G2O, RGBDSLAM package

WorkStation: calkin_ws

Dataset: rgbd_dataset freburg1_xyz.bag

2. Preparation:

Install the ROS full version kinetic, following the tutorial in

website ROS.org;

Install RGBDSLAM in website ROS.org which relates to GitHub

(met a problem about version of c++ standard, solved by adding

set(CMAKE_CXX_FLAGS "-std=c++11") in file CMakeLists.txt)

Install G2O in website ROS.org which relates to GitHub

Install the independencies about G2O and RGBDSLAM

Install a dataset: rgbd_dataset freburg1_xyz

3. Simulation demo

When I want to launch rgbdslam with “roslaunch rgbdslam

rgbdslam.launch”, there are the errors of following picture:

Errors don’t show any information and error message about it,

not log file to trace.

Plan to by reinstall package RGBDSLAM, but without success.

Still ongoing to solve this problem.

For depth map (depth image): with the dataset I download:

rgbd_dataset freburg1_xyz.bag

roscore

rosbag play rgbd_dataset freburg1_xyz.bag

and open rviz: rosrun rviz rviz

Conclusion

During the period of this project, I do two sous-projects: Gmapping and

RGBDSLAM that makes me learn SLAM step by step from knowing nothing to

be familiar with SLAM. When I do these two projects, there are some

problems all the time, some are easy to solve and some problems takes a lot

of time doing research.

I think there is still a lot of space for development in the domain of SLAM

about optimization of algorithms or materials both in front-end and back-end

parts.

At last, I want to thanks the helps that mister RUICHEK and mister YAN give

me to advance my project.

Annex

https://openslam-org.github.io/

https://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping

https://www.cnblogs.com/gaoxiang12/p/5560360.html

https://en.wikipedia.org/wiki/Particle_filter

https://blog.csdn.net/qq_27550989/article/details/78341904

https://blog.csdn.net/bingoplus/article/details/56667475

https://blog.csdn.net/MyArrow/article/details/52678020

https://en.wikipedia.org/wiki/Depth_map

http://www.ros.org/

https://blog.csdn.net/lingchen2348/article/details/79503970

http://www.cnblogs.com/gaoxiang12/p/4462518.html

https://openslam-org.github.io/
https://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
https://www.cnblogs.com/gaoxiang12/p/5560360.html
https://en.wikipedia.org/wiki/Particle_filter
https://blog.csdn.net/qq_27550989/article/details/78341904
https://blog.csdn.net/bingoplus/article/details/56667475
https://blog.csdn.net/MyArrow/article/details/52678020
https://en.wikipedia.org/wiki/Depth_map
http://www.ros.org/
https://blog.csdn.net/lingchen2348/article/details/79503970
http://www.cnblogs.com/gaoxiang12/p/4462518.html

