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Abstract— This paper presents a physiological monitoring
system for assistive robots using a thermal camera. It is based
on the detection of subtle changes in temperature observed on
different parts of the face. First, we segment and estimate these
face regions on thermal images. Then, by applying Fourier anal-
ysis on temperature data, we estimate respiration and heartbeat
rate. This physiological monitoring system has been integrated
in an assistive robot for elderly people at home, as part of the
ENRICHME project. Its performance has been evaluated on
a new thermal dataset for physiological monitoring, which is
made publicly available for research purposes.

I. INTRODUCTION

Considering the ageing population and increasing life-
expectancy of people in the world, well-being and health
monitoring is an important topic in various research fields.
For assistive technologies, several approaches, from wearable
to contact-free [9], [4], have been proposed for monitoring
physiological parameters. Although wearable devices may
have advantages over contract-free devices in terms of accu-
racy, they are often impractical, especially for elderly people
with cognitive impairments, who may forget or refuse to
wear them. Since many contact-free approaches require to
stand in front of a fixed camera or sensor, it is hard to apply
them in real-world scenarios for domestic use.

This paper proposes a contact-free physiological monitor-
ing system integrated in a mobile cognitive assistive robot.
This is part of the ENRICHME* project, which provides
adaptive and cognitive stimulation for the elderly with mild
cognitive impairments. the system detects subtle changes in
temperature on thermal images, acquired by a thermal cam-
era on the top of the robot (Fig. 1). The software developed
for this application estimates three important physiological
parameters, i.e. temperature, respiration and heartbeat rate.

The contributions of the paper are threefold:
• A practical estimation method of face temperature,

respiration rate and heartbeat rate combining face pose
and region-based FFT analysis of thermal images;

• A complete and ready-to-use software pipeline for phys-
iological monitoring with a mobile robot;

• A new publicly available thermal dataset for physiolog-
ical monitoring.
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Fig. 1. The ENRICHME system integrates an assistive robot for the
elderly (a) to monitor their physiological state with a thermal camera (b).

The remainder of the paper is as follows. Section II
describes some related work on contact-free physiological
monitoring. Section III explains how the physiological pa-
rameters are estimated. The experimental results with a
new public dataset are presented in Section IV. Finally, we
conclude this paper in Section V discussing achievements
and current limitations.

II. RELATED WORK

Among the growing number of assistive technologies,
those for physiological monitoring have become very popu-
lar. In this section, we omit wearable devices and focus on
contact-free approaches relevant to this paper.

Most of the existing solutions utilize color images acquired
from RGB cameras. Based on the fact that the human
skin color varies slightly with the blood circulation, the
authors in [13] amplify a band of temporal frequencies that
include plausible human heart rates, revealing the variation
of redness as blood flows through the face. Similarly, in [2],
subtle head oscillations that accompany the cardiac cycle are
exploited. The cyclical movement of blood from the heart to
the head via the abdominal aorta and the carotid arteries
causes the head to move in a periodic motion. The authors
track feature points on a person’s head and use principal
component analysis (PCA) to find a periodic signal caused
by the pulse. In [11], the respiration rate is estimated by de-
tecting the chest movements using subsequent subtractions.

The previous approaches mostly rely on color information
and therefore are affected by shadows and illumination
changes. Thermal images can be used to reduce these issues.
In [4], the heart rate is estimated by applying a Fast Fourier
Transform (FFT) on the temperature signal, extracted from
a line-based region along the major superficial vessel. The
authors in [1] monitor the respiration rate by observing
temperature changes on the nose region. They automatically
detect the latter by finding the warmest and coldest points



Fig. 2. The flow diagram of the physiological monitoring system.

on the face. Similarly, in [3], the authors exploit a pan-
tilt thermal camera system to track the mouth-nose region
and estimate the respiration rate by looking at temperature
variations. The region is manually initialized by the user and
then tracked using optical-flow. These approaches assume a
semi-static setup with a steady user in front of the camera.
Such assumption, however, is impractical for mobile robots
in real-world application, in particular for monitoring elderly
people at home. New solutions are needed to estimate
physiological parameters on thermal images despite face or
camera movements.

III. PHYSIOLOGICAL MONITORING

The system described next extracts face temperature, respi-
ratory rate and heartbeat rate using a thermal camera (Optris
PI-450). The main challenges include face pose estimation
in thermal images and biometric feature extraction from
temperature information. Fig. 2 shows the process steps.

A. Face Temperature

The raw thermal image (height = 288 pixels,
width = 382 pixels, frame rate = 27 Hz) is initially
converted to a colour image (BGR8) and a corresponding
temperature matrix having the same size as the image.
Then, we use Algorithm 1 to find the face region within the
temperature matrix. Here, the thresholds tmin and tmax are
manually chosen, assuming the body temperature of the user
falls between 30◦C and 40◦C. After this, a morphological
closing operation is performed to improve the face contour.
Another threshold cmin is used on the latter to filter faces
that are too small and difficult to process. Then, based on the
approach in [12], the convexity of the contour is analysed to
detect the actual face region. A visual representation of the
process is shown in Fig. 3. For simplicity, and considering
only personal robot applications, the current system assumes
there is only one face in the image.

Algorithm 1: Face detection in temperature matrix.
1 Convert temperature matrix to binary image

binarypixel =

{
255 if t ∈ (tmin, tmax),

0 otherwise;

2 Apply morphological closing operation;
3 Find biggest contour c among all areas;
4 if c > cmin then
5 Analyse contour convexities to extract face area;

Estimate nose and forehead locations using
facial landmark ratios;

6 end

Fig. 3. Face detection in thermal images.

(a) (b)
Fig. 4. (a) the 68 facial landmark points detected using the face pose
estimation in [7] and (b) forehead and nose region detection.

The final face temperature is calculated as follows:

tavg =

∑n
i=0 ti
n

, ti ∈ face region, (1)

averaging all the n temperature values in the face region.

B. Respiration and Heartbeat Rate

Respiratory and heartbeat rate can be obtained with a
Fourier analysis of the temperature data on the nose and the
forehead regions, respectively [4], [1]. These regions are ex-
tracted with the help of a facial pose estimation algorithm [7],
here applied to thermal images. The algorithm detects 68
face landmark points (Fig. 4-a) using the method proposed
by [6] and trained on the iBUG 300-W dataset [10]. After
detecting the landmark points, we delimit a forehead region
of 30x30 pixel above and between eyebrow points. Similarly,
we take the 30x30 pixel area around the nose points for the
respective region (Fig. 4-b). Our implementation pipeline is
similar to a webcam-based pulse detector1, which uses the
green channel of RGB images, instead of thermal images, to
estimate the heartbeat rate.

The implementation of our respiration rate estimator is
explained by Algorithm 2. A FIFO contains the time series
data to be processed. The pre-defined number of samples
(nr) must be appropriately set in order to have enough data
for the calculation. In our case, we assume that at least
10 second of data is required to evaluate the respiratory rate
with our thermal camera at 27 Hz, and therefore nr = 270.

1https://github.com/thearn/webcam-pulse-detector



Algorithm 2: Respiration rate estimation using FFT.
1 Set a FIFO data buffer with size br;
2 Fill the average temperatures ti of the nose region

(time series data) into the buffer;
3 Set a minimum number of samples nr;
4 if nr ≤ br then
5 Generate evenly spaced time intervals mi;
6 Use one-dimensional linear interpolation to

approximate ti that matches mi;
7 Use Hamming window to minimize the signal

side lobe in frequency domain;
8 Normalize the temperature signal;
9 FFT of the normalized temperature signal;

10 Get the respiration rate according to the
spectrum amplitude peak;

11 end

Because of the real-time acquisition, the temperature data
could be unevenly spaced in time. Therefore, before applying
FFT, we re-sample the evenly spaced ti values at mi intervals
using a linear interpolation of the original data. We then use
a Hamming window [5], [8] to minimize the signal side lobe
(unwanted radiation) and improve the quality of the incoming
data, resulting in a larger but smoother frequency peak.

t̃i[n] = wH [n] · ti[n] (2)

where wH [n]=0.54−0.46·cos(2πn/(N−1)) is the Hamming
window function and N is the length of the temperature data.

After the Hamming window, we take the FFT of the signal
in the buffer and calculate the respiration rate corresponding
to the peak amplitude in the frequency spectrum:

fr = argmax
k

(T̃i[k]) (3)

where T̃i[k] = F{t̃i[n]} is the FFT of the signal. To reduce
the effect of noisy observations in thermal images, we also
apply a moving average on the estimated respiration rate
using a temporal window of br samples.

The estimation of the heartbeat rate is similar to the
respiration one, but it is based on the temperature of the
forehead region rather than the nose region. The buffer
size (bh) and a the number of samples (nh) are also different.

IV. EXPERIMENTS

Our software for physiological monitoring is encapsulated
into a Robot Operating System2 (ROS) package, which can
be easily installed in any ROS-compatible robot system. This
package includes launch and configuration files with pre-
defined parameters for physiological monitoring, as shown in
Table I. The software is publicly available, together with our
new thermal dataset3. This section presents the dataset and
some preliminary results from the experimental evaluation of
our system implemented on the ENRICHME assistive robot.

2http://www.ros.org
3https://lcas.lincoln.ac.uk/wp/research/data-sets-software/lcas-thermal-

physiological-monitoring-dataset/

Name Description Default Value Unit
temp thr min Lower value for thresholding

thermal images (tmin) 30 ◦C
temp thr max Higher value for thresholding

thermal images (tmax) 40 ◦C
contour area min Minimum value for the area

of the face contour (cmin) 30 pixels
resp buffer min Minimum number of samples

(buffer) required for respiration
rate estimation (nr) 100 samples

resp buffer max Size of the buffer for
respiration rate (br) 1000 samples

heart buffer min Minimum number of samples
(buffer) required for heartbeat
rate estimation (nh) 10 samples

heart buffer max Size of the buffer for
heartbeat rate (bh) 250 samples

TABLE I
PARAMETERS OF THE SOFTWARE FOR PHYSIOLOGICAL MONITORING

AND THEIR DEFAULT VALUES.

(a) (b) (c)

(d) (e) (f)
Fig. 5. (a) Optris PI-450 camera, mounted on the top of the robot, to
record the thermal dataset. (b-f) Some thermal images from the dataset.

A. Thermal Dataset

We created a thermal-based physiological monitoring
dataset of rosbag files for the ROS environment. The dataset
contains 5 people sitting in front of the robot, observed by
an Optris PI-450 thermal imager mounted on the top of
the robot, at 1.3 m from the floor (Fig. 5-a). The distance
between the robot and the user’s face was approximately
1.5 m. Each file contains thermal images of the user’s upper
body, with a resolution of 382×288. We have recorded two-
minute data for each person, with thermal images taken at
27 Hz. The participants were asked to remain still during the
first minute, and then to move the head up and down, forward
and backward, turning right and left. Each head position was
kept for 10 seconds, in total collecting approximately 3,000
continuous images. Some examples are shown in Fig. 5-(b-f).

The ground truth of the temperature is the average value
of the forehead region, manually segmented on the thermal
image. Each participant wore a fingertip pulse oximeter
(Acurio AS-302-L) during the recording, which provided the
ground truth for the heartbeat rate. Finally, the ground truth
of the respiration rate was obtained by manually annotating
the time instants when the person was inhaling, and calcu-
lating the breath cycle times from these annotations.



STD of Temperature [◦C]
Still Moving

Person 1 0.14 0.19
Person 2 0.07 0.31
Person 3 0.06 0.33
Person 4 0.07 0.22
Person 5 0.09 0.16
Overall 0.09 0.25

TABLE II
STD OF THE TEMPERATURE ESTIMATED BY OUR SYSTEM.

Still Moving
Mean STD RMSE Mean STD RMSE

Temp. [◦C] 0.86 0.06 0.86 0.78 0.48 0.88
Resp. [bpm] 3.72 0.78 3.81 5.87 2.18 6.20
Heartbeat [bpm] 29.68 15.76 33.18 18.96 12.15 22.51

TABLE III
ESTIMATION ERRORS OF OUR PHYSIOLOGICAL MONITORING SYSTEM.

B. Physiological Monitoring Results

We ran our system on the collected dataset and estimated
face temperature, heartbeat rate and respiration rate. Table II
shows the standard deviation (STD) of the estimated temper-
atures when the persons were still and when they moved their
heads. It can be observed that, despite a small increase, the
temperature variations in both cases are within acceptable
limits. Also, thanks to the known face pose, the head
movements seem to influence the temperature estimation
very little.

Fig. 6 shows some examples of estimated respiration and
heartbeat rate, together with the respective ground truth.
Table III, instead, reports the mean and STD of the absolute
error for each parameter. Even in this case, we can see
that our approach can estimate the face temperature with
good approximation (average error < 1◦C), for both the still
and moving cases. However, the results for the respiration
rate are less satisfactory, in particular when the person is
moving, although the relatively small STD suggests the
estimation may be affected by a systematic error, which
could be reduced by an opportune calibration. Finally, for
the heartbeat, we can see that the estimation is affected by
considerable errors, independently of whether the partici-
pants were moving or not. This is not completely unexpected
though, as the heartbeat rate estimation depends on the
forehead position, which is very difficult to localize robustly
(more than the nose), and the thermal frequency analysis can
be very sensitive to small noises on this region.

V. CONCLUSIONS

This paper presented a contact-free physiological moni-
toring system for assistive robot applications. The system
utilizes a thermal camera, mounted on a robot, to detect
subtle changes in temperature of different face regions. Using
Fourier analysis, we estimate also respiration and heartbeat
rate. The proposed system has been evaluated on a new
thermal dataset, made publicly available for the research
community. Some preliminary experiments show that the

Fig. 6. Examples of respiration/heartbeat rate estimation and ground truth.

proposed system has the potential to become an effective
physiological monitoring solution for assistive robots in
unconstrained settings, dealing with small movements of
the person or of the robot itself. Although the estimation
performance are not always satisfactory, the system has
been successfully implemented and used in ENRICHME
to determine approximate levels (i.e. high, normal, low) of
physiological parameters. In our future work, we will exploit
the RGB-D camera of the robot for face tracking to facilitate
the localization of nose and forehead regions, improving the
estimation of respiration and heartbeat rate, respectively.
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