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LAUGIER CHRISTIAN Directeur de Recherche (émérite) à l’Inria, France Examinateur
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Simon Lacroix était une personne très gentille et je garderai toujours en mémoire
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Ce document a été établi dans le respect des exigences de l’article 4 de l’arrêté du 23
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1

INTRODUCTION

Nous allons changer un petit peu. Non
pas pour nous adapter à nos
machines, mais parce que nos
machines vont nous faire changer.

Patrick Greussay

1.1/ RESEARCH BACKGROUND

My interest in mobile robotics, or rather, mobile robotic intelligence, began with my expo-

sure to the RoboCup1. This is thanks to Prof. Nicolas Jouandeau, my doctoral research

supervisor. At the same time, it can also be seen that I am a recipient of RoboCup’s con-

cept of attracting young people to learn and explore Science, Technology, Engineering,

and Mathematics (STEM), so that our community can always inject new blood to main-

tain vitality. On the other hand, my systematic understanding of Artificial Intelligence (AI)

comes from Prof. Patrick Greussay, the father of VLISP2. His inspiration has been influ-

encing the establishment of my view of AI (in knowledge representation and reasoning)

from my undergraduate studies to my doctoral research, and has actually become the

original driving force for my pursuit of embodied-AI in robotics.

So what is embodied-AI? Embodied-AI refers to an intelligent system that perceives

and acts based on the physical body, which obtains information, understands problems,

makes decisions and implements actions through the interaction between the intelligent

agent and the environment, thereby producing intelligent behavior and adaptability. The

germination of its ideas can be traced back to the birth of AI, as Alan Turing wrote (Turing,

1950):

“We may hope that machines will eventually compete with men in all purely
1https://www.robocup.org/
2https://www.artinfo-musinfo.org/fr/issues/vlisp/index.html

1



2 CHAPTER 1. INTRODUCTION

intellectual fields. But which are the best ones to start with? Even this is

a difficult decision. Many people think that a very abstract activity, like the

playing of chess, would be best. It can also be maintained that it is best to

provide the machine with the best sense organs that money can buy, and

then teach it to understand and speak English. This process could follow the

normal teaching of a child. Things would be pointed out and named, etc.”

Playing chess can be seen as disembodied-AI, such as what Deep Blue in the last cen-

tury and AlphaGo in this century presented to people. The example of understanding

and speaking English can be seen as embodied-AI, corresponding to the topic that this

dissertation wants to discuss. These two different examples actually reveal my under-

standing of the difference between agents and robots early in my research career (Yan

et al., 2013b):

“We should be careful not to confuse multi-robot systems (MRS) with multi-

agent systems (MAS) and distributed artificial intelligence (DAI), as MAS usu-

ally refers to traditional distributed computer systems in which individual nodes

are stationary, while DAI is primarily concerned with problems involving soft-

ware agents. In contrast, MRS involves mobile robots that can move in the

physical world and must physically interact with each other.”

Figure 1.1 gives an intuitive impression of the differences between disembodied-AI and

embodied-AI. In addition, Turing’s second example also brings out two aspects that my

research is concerned about: (robot) perception and learning.

Figure 1.1: Disembodied-AI (left) vs. Embodied-AI (right).

So why do we, or rather robots, need embodied-AI? First, as mentioned in the previ-

ous paragraph, a robot is an entity that essentially needs to physically interact with the

real world (assuming the world we are in is not virtual). From a philosophical point of

view, individuals who lack embodied cognition lack actual existence, which is similar to
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Descartes’s point of view “I think, therefore I am”, which is opposite to Heidegger’s later

“I am, therefore I think”. Second, in the physical world, context plays a crucial role in

semantic understanding, and the lack of embodied-AI will make it difficult for robots to

make informed decisions based on situational awareness. Last but not least, the phys-

ical environment in which robots operate changes, slow like the seasons and fast like a

pedestrian. The lack of embodied-AI makes it difficult for robots to cope with changes in

the real world.

1.2/ RESEARCH POSITIONING

Although my research positioning in different periods remains consistent at the macro

level, that is, rooted in computer science to make mobile robots a productive tool for

human society, it has experienced some evolution at the micro level, and overall, it can

be seen as a transition in my research focus from symbolic approaches to statistical

approaches, connectionist approaches, and activist approaches. Not fully converting to

connectionism was due to my ongoing interest in mathematical logic and my concerns

about the interpretability of connectionist methods. The focus on activism is actually

more of an interest in reinforcement learning.

My PhD research was driven by RoboCup’s NAO Robot Soccer League (Yan et al., 2011b;

Jouandeau et al., 2012) and focused on the coordination strategies required among mem-

bers of a team of mobile robots working towards the same goal (Yan et al., 2013b). For-

tunately, I was mainly studying multi-robot coordination strategies from two aspects: task

planning and motion planning, which provided me with valuable experience in robots

as actuators for my later research on embodied-AI. Specifically, in terms of task plan-

ning (Yan et al., 2012c), my focus was mainly on the decentralized approach, which al-

lows each robot to decide for itself what it should do, based on a rigorous logical struc-

ture (Yan et al., 2011a; Jouandeau and Yan, 2011). Additionally, I investigated centralized

approaches, where a global agent determines the optimal task allocation strategy based

on partially observable information (Yan et al., 2012b). Although the latter is not really

consistent with the idea of embodied-AI, it was my first time to study how to incorporate

statistical methods into traditional task planning. As for path planning, my research at

the time was focused on how to use sampling-based methods which are very efficient

in high-dimensional configuration spaces to plan paths for multiple robots with less col-

lision, deadlock and congestion (Yan et al., 2010; Jouandeau and Yan, 2012; Yan et al.,

2012a, 2013a). For research on this part, please refer to my doctoral thesis (written in

French) (Yan, 2012), which will not be repeated in this dissertation.

My first postdoctoral research did not investigate embodied-AI methods per se, but in-

stead focused on how to effectively test and evaluate these methods and facilitate com-
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parisons between different methods. Specifically, taking the multi-robot exploration prob-

lem as the target task, the standardizable system performance metrics (Yan et al., 2014,

2015b), benchmarking process (Yan et al., 2015a, 2016), and testbed construction were

studied (Yan et al., 2017b). This systematic study of test and evaluation methods greatly

influenced my subsequent research. The latter absorbed the agile development methods

in the field of software engineering (as shown in Figure 1.2), implemented rapid closed-

loop iterations for the development of new methods, and always prioritized benchmarking

when conducting experiments (Vintr et al., 2020; Yang et al., 2021a; Vintr et al., 2022;

Yang et al., 2023a; Okunevich et al., 2023). There is a chapter in this thesis devoted to

this topic.

Figure 1.2: Schematic diagram of agile development methodology in software engineer-
ing.

My second postdoc returned to research on the methods of embodied-AI and began to

focus on statistical approaches while exposuring to connectionist approaches. Scientifi-

cally, two issues were being studied. One is how to make a robot aware of the surround-

ing humans through embodied perception, including their detection and tracking (Bellotto

et al., 2018), to ensure that the robot is safe for humans when moving. The other is how

to achieve out-of-the-box and long-term robot autonomy by enabling the robot to learn

and reason about the environment (Yan et al., 2023), such as predicting the trajectory

and the appearance of humans.

Regarding the first issue, my research focused on using embodied non-visual sensors,

especially 3D lidar (Yang et al., 2022), to implement large-scale and long-distance hu-

man perception (see Figure 1.3 for an intuitive understanding). This sensor can intuitively

provide the object distance information needed for the robot to move without collision,

and compared with the classic 2D lidar, it can provide more than one plane of laser mea-

surement points, making it possible for the robot to detect objects based on a set of 3D

points (called point cloud) representing the environment. Specifically, my research (Yan

et al., 2017a) used a tree search-based method to segment the point cloud and then

used Support Vector Machine (SVM) to binary classify the segments to determine which

points represent humans and which points do not. For human tracking, the Global Near-

est Neighbor (GNN) and Joint Probabilistic Data Association (JPDA) methods were used
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for data association, while the Unscented Kalman Filter (UKF) method was used for state

estimation. The above methods for human detection and tracking are all statistical meth-

ods.

Figure 1.3: Human detection and tracking in 3D point clouds (Yan et al., 2017a). Detected
humans are enclosed in green bounding boxes. The colored lines are human movement
trajectories generated by a multi-target tracker we developed.

Regarding the second issue, my personal research mainly focused on the robot’s learning

of the environment, while the robot’s reasoning about the environment was researched

in collaboration with my close partners Dr. Kevin Li Sun and Dr. Tomas Krajnik. The

former forms the core of my research so far, which aims to give robots an Online Learn-
ing (OL) ability (Yan et al., 2017a) (see Figure 1.4) so that they can absorb some new

knowledge in the short term and maintain long-term memory of this knowledge. This

kind of robot learning is on-site, on-the-fly, and faces a unique challenge different from

traditional machine learning fields: the data that enters a learning system is often un-

foreseen and unannotated. It is worth pointing out that my research aims to propose

a general learning method / framework (with dynamic representation capabilities) rather

than a learning model. In other words, the proposed learning method should theoretically

be able to incorporate different learning models. The theoretical foundation of robot OL

is still statistics.

Regarding the prediction of the appearance of humans at a certain time and place, we

still focused on using statistical methods, including heat maps (Yan et al., 2020b) and

histograms (Vintr et al., 2018, 2019b,c,a), to build spatiotemporal models of long-term

observations of robots. As for the prediction of human movement trajectories, we mainly

used connectionist methods including Long Short-Term Memory (LSTM) to learn predic-

tion models from long-term robot deployment data (Sun et al., 2018). In addition, for

research on robot learning, I still mainly focused on the use of non-visual sensors, which
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Figure 1.4: Principle diagram of Robot Online Learning (ROL). It is easy to understand
that by adding a learning module to the classic operational definition of service robots
“sense-think-act”, online learning is established, forming “sense-learn-think-act”. The
dashed boxes on both sides indicate that the modules included are closely related and
can sometimes even be merged into one module.

are beneficial to the long-term autonomy of the robot as they are not sensitive to lighting

conditions.

The research content from my second postdoc to the present constitutes the main body

of this thesis (see Figure 1.5), that is, how to build the embodied-AI of robots from the

two aspects of robot perception and learning, and the downstream tasks mainly include

human-aware robot navigation and long-term robot autonomy. The research after my

second postdoc was mainly carried out with my graduate students, doctoral students and

postdocs. The main line is still robot OL (Yan et al., 2018b, 2020a, 2023), and branch

research around this includes denoising sensory data. As an overview, my graduate stu-

dent Mr. Filip Majer studied how to use OL to enable embodied millimeter-wave radar to

learn human detection capabilities from embodied 2D lidar (Majer et al., 2019; Broughton

et al., 2021b); my Ph.D. student Dr. Rui Yang studied how to use OL to enable 3D lidar

installed on autonomous vehicles to learn the detection capabilities of road participants

from the cameras installed together (Yang et al., 2021a, 2023a), and avoid the problem

of catastrophic forgetting of learned knowledge during cross-environment learning (Yang

et al., 2024a); my Ph.D. student Dr. Iaroslav Okunevich studies how to combine OL with

deep reinforcement learning to enable mobile robots to adapt to different social contexts

while navigating over long periods of time and across environments (Okunevich et al.,

2025); and my postdoc Dr. Tao Yang studied how autonomous vehicles denoise images

in rainy weather (Yang et al., 2020a) and point cloud data in foggy weather (Yang et al.,

2020b, 2021b; Broughton et al., 2021a; Yang et al., 2023b).
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Figure 1.5: Topology of my research content.

1.3/ INDUSTRIAL POSITIONING

I work with industry, a lot. This is motivated by my research positioning that is driven

by practical problems and oriented to industrial needs. The first example is my second

postdoctoral research in the framework of the European project FLOBOT3, which aims to

develop an embodied perception system for a floor washing robot for professional users

to ensure that it does not hinder the surrounding humans while working (navigating) (Yan

et al., 2020b). Our industrial partners are Fimap, a well-known Italian scrubbing machine

manufacturer, and EasyMile, a well-known French autonomous driving system developer.

Collaborating with them not only puts forward clear generalization ability and adaptability

requirements for my research in method development, i.e., the method should not be

targeted at specific scenarios and can adapt to changes in the environment, but also puts

forward requirements for the implementation (code) quality of the method, the real-time

nature of the implemented system, and the deployability in the wild.

The second example is my research collaboration with Toyota4, where I needed to lead

and implement our research work within a clear contractual framework and confidential-

ity agreement. The research aims to study robot perception and learning methods and

ensure that the developed methods can be deployed on the prototype robot HSR (Hu-

man Support Robot) developed by Toyota (Vintr et al., 2020; Crombez et al., 2021; Yan

et al., 2021; Zhao et al., 2021a; Vintr et al., 2022). The third example is my collaboration

with Renault5, within the framework of which, together with a partner from industry, we

supervised a postdoctoral study. This research aims to model the noise caused by water

droplets in the air in lidar data under rain and fog weather to enhance the perception of the

3https://cordis.europa.eu/project/id/645376
4https://yzrobot.github.io/MACPOLO/
5https://yzrobot.github.io/DENOSAU/
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environment by autonomous vehicles in adverse weather conditions (Yang et al., 2020b,

2021b). This collaboration seamlessly connects my scientific research topics and meth-

ods with practical industrial applications and can be considered a showcase that reflects

the industrial orientation of my research.

1.4/ OPEN SCIENCE

Open science6 has been an important theme in my research career so far. Initially, the

“push” on the one hand came from the fact that I struggled to compare with other methods

during my Ph.D. because they were not open source, and the “pull” on the other hand

came from the fact that my doctoral research benefited from the open source robotics

project Player/Stage (Gerkey et al., 2003). Early in my research career I focused on open

software and source code. This corresponds to my focus on symbolic approaches, which

are not data driven. Later as my research started to focus on data-driven approaches,

open research data became part of it. Additionally, as a teacher, I made my educational

resources public.

Specifically, the open materials mostly completed by myself are listed below:

• Open research data:

– L-CAS 3D Point Cloud People Dataset (https://lcas.lincoln.ac.uk/wp/research/

data-sets-software/l-cas-3d-point-cloud-people-dataset/) (Yan et al., 2017a):

This dataset was collected with a 16-layer 3D lidar mounted on a mobile robot,

in one of the main buildings of the University of Lincoln, UK. It includes 28,002

scan frames recorded by the robot while stationary and moving, with a total

length of 49 minutes. About 20% of the data was manually annotated to form

ground truth.

– L-CAS Multisensor People Dataset (https://lcas.lincoln.ac.uk/wp/research/

data-sets-software/l-cas-multisensor-people-dataset/) (Yan et al., 2018b):

This dataset is a supplement to the previous one, adding sensory data from an

infrared camera and a 2D lidar.

– L-CAS Thermal Physiological Monitoring Dataset

(https://lcas.lincoln.ac.uk/wp/research/data-sets-software/

lcas-thermal-physiological-monitoring-dataset/) (Cosar et al., 2018): This

dataset is designed to evaluate human physiological monitoring algorithms

based on thermal imagers including body temperature, respiratory rate and

heart rate. It consists of a thermal camera recording thermal images of five

6https://github.com/yzrobot/Open-Science-UTBM
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different faces at 27 Hz for two minutes each. People were asked to remain

still for the first minute and then move their heads up and down, back and

forth, and left and right, holding each movement for ten seconds.

– FLOBOT Perception Dataset (http://lcas.github.io/FLOBOT/) (Yan et al.,

2020b): This dataset was collected using FLOBOT (an advanced autonomous

floor scrubber) in public places in Italy and France including an airport, a su-

permarket and a warehouse. It includes data from four different sensors, in-

cluding a 3D lidar and an RGB-D camera for human detection and tracking,

and another RGB-D and a stereo camera for ground dirt and object detection.

Additionally it contains the pose of the robot in the world reference frame.

– EU Long-term Dataset with Multiple Sensors for Autonomous Driving (https:

//epan-utbm.github.io/utbm robocar dataset/) (Yan et al., 2020c): This dataset

was collected over a year in Montbéliard, France, in the city center (for long-

term data) and in the suburbs (for roundabout data) using a vehicle equipped

with 11 different sensors. For long-term data, the driving distance in each

round is approximately 5.0 kilometers (including a small loop and a large loop

for loop closure), and the length of recorded data is approximately 16 minutes.

For the roundabout data, the driving distance of each collection round is about

4.2 kilometers (including 10 roundabouts of different sizes), and the recording

data length is about 12 minutes.

• Open software and source code (selected):

– Adaptive Clustering (https://github.com/yzrobot/adaptive clustering) (Yan

et al., 2017a): This is a lightweight and accurate point cloud clustering method

implemented in C++.

– L-CAS 3D Point Cloud Annotation Tool (https://github.com/yzrobot/cloud

annotation tool) (Yan et al., 2020a): This tool provides semi-automatic anno-

tation of point cloud data, whereby the point cloud is first automatically seg-

mented and then each segment is labeled by humans.

– Online Learning for Human Classification in 3D LiDAR-based Tracking (https:

//github.com/yzrobot/online learning) (Yan et al., 2017a): This is the code re-

leased with the paper, which allows the robot to learn a human model in the

point cloud online at runtime without human intervention.

– Multi-robot Exploration Testbed (https://github.com/yzrobot/mrs testbed) (Yan

et al., 2017b): This testbed allows dozens of mobile robots to be repeatedly

deployed in a 3D simulation scene driven by a physics engine to perform envi-

ronment exploration tasks, and automatically collect various performance data

during task execution for later analysis.
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• Open educational resources:

– Introduction to Mobile Robotics (https://yzrobot.github.io/introduction to

mobile robotics/): This course is designed to introduce basic concepts and

techniques used in the field of mobile robotics. Relevant fundamental prob-

lems and challenges are analyzed, and both classic and cutting-edge solutions

are illustrated.

The open materials completed primarily by my students and postdocs under my supervi-

sion are listed below:

• Open research data:

– Light Field Raindrop Dataset (https://github.com/cavayangtao/

light-field-raindrop-dataset) (Yang et al., 2020a): This dataset was col-

lected using the first-generation Lytro camera, which contains 90 light field

images under rainy weather, 50 of which correspond to one round of collection

routes of the EU Long-term dataset.

• Open source code (selected):

– Point Cloud Denoising in Adverse Weather Conditions for Autonomous Driv-

ing (https://github.com/cavayangtao/lanoising) (Yang et al., 2020b, 2021b),

(https://github.com/cavayangtao/lanoise pp) (Yang et al., 2023b): These are

the source codes that my postdoc Dr. Tao Yang released with the papers dur-

ing his postdoctoral research.

– Online Continual Learning for 3D Detection of Road Participants in

Autonomous Driving (https://github.com/RuiYang-1010/efficient online

learning) (Yang et al., 2021a, 2023a), (https://github.com/RuiYang-1010/

lstol) (Yang et al., 2024a): These are the source codes that my Ph.D. student

Dr. Rui Yang released with the papers during his doctoral research.

– Online Context Learning for Socially-compliant Navigation (https://github.com/

Nedzhaken/SOCSARL-OL) (Okunevich et al., 2025): This is the source code

that my Ph.D. student Dr. Iaroslav Okunevich released with the paper during

his doctoral research.

• Open software and hardware:

– Human-aware Robot Navigation System (https://github.com/Nedzhaken/

human aware navigation) (Okunevich et al., 2023, 2024): This is the source

codes and hardware models that my Ph.D. student Dr. Iaroslav Okunevich

released with the papers during his doctoral research.
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1.5/ THESIS ORGANIZATION

As my research experience grew, I gradually became accustomed to narrating my re-

search results as a story. There are two advantages to doing this. From the author’s

point of view, the content introduced is systematic. And from a reader’s perspective, the

manuscript may be more readable. The remainder of the dissertation is therefore orga-

nized as follows.

Chapter 2 introduces my work so far in mobile robot software engineering, which mainly

includes benchmarking of robot performance including evaluation methods, metrics, con-

struction of testbeds and datasets, etc. In addition, some insights and thoughts on how

to integrate AI into testing tools, benchmarking ethics, and data privacy, which are some

of the aspects involved in modern AI development, will be given. Although the latter are

not the focus of my research, it may be interesting to share some of my experiences and

give some of my opinions as we are increasingly unable to avoid these issues in today’s

research activities. Starting the main body of the thesis with the topic of benchmarking is

a bit like the idea of “testing before development” in the field of software engineering, that

is, we need to understand how to evaluate them before we really discuss the methods

for realizing embodied-AI. Moreover, this also happens to be consistent with the actions

of the European Commission, that is, it would be a good choice to formulate a standard

before vigorously developing AI to prevent its development from being uncontrolled and

unregulated, which would lead to disastrous consequences (aiact).

Chapter 3 introduces my research work on robot perception. In a systematic way, the

research motivation is first introduced, which is to use embodied sensors and onboard

computing for large-scale human detection and tracking in public (non-home) environ-

ments. Then the contemporary 3D lidar adopted as an embodied sensor, from its basic

working principle to its relevant applications in the field of mobile robots, is introduced.

Next, the “adaptive clustering” method I developed during my postdoctoral period will be

introduced, and the advantages and limitations of the proposed method will be illustrated

by comparing its performance with other popular methods at the time. Then, several

hand-crafted features extracted from point clouds with proven performance for human

model training are introduced. Finally, a multi-target tracker optimized for deployment in

point clouds is introduced.

Chapter 4 introduces my research work on robot learning, including a systematic study of

Robot Online Learning (ROL) frameworks. First, what is ROL and why robots need OL are

explained. Then, two ROL frameworks are introduced, one based on P-N learning and

the other based on knowledge transfer. The advantages and disadvantages of the two

methods are analyzed. The former does not require external help but will produce self-

bias. The latter can avoid self-bias but requires external help. In addition, the latter also



12 CHAPTER 1. INTRODUCTION

needs to resolve conflicts between internal and external parties. Next, the issue of how

to alleviate catastrophic forgetting in the long-term process of ROL is addressed. Finally,

how to leverage ROL to improve the performance of socially-compliant robot navigation

in long-term and cross-environment deployments is introduced.

Chapter 5 summarizes the full text and gives prospects for future research.


