

Navigation using a topological map with an autonomous vehicle

Jin PAN

​UTBM, Computer Science engineering student
email: j​​in.pan@utbm.fr

June 20, 2018

Abstract

Autonomous vehicle navigation gains increasing importance in various growing
application areas. In this article we describe a project it navigates the vehicle
autonomously to its destination. This project use Openstreetmap(OSM) to help
define a topological map, so we can decide the path by listing the waypoint on the
map, then make a link between the OSM and the SLAM based global map to feed
ROS navigation Stack.

Introduction

An autonomous vehicle, known also as a self-driving vehicle, has became a concrete
reality in the past dozen years, and may pave the way for future systems where
computers take over the human drivers.

As an autonomous vehicle, it is capable of sensing its location, navigating its way
toward its destination and avoiding obstacles without human input. Autonomous
vehicles sense their surroundings with such techniques as radar, lidar, GPS,
computer vision etc,. Advanced control systems interpret information from sensors to
identify appropriate navigation paths, as well as obstacles.

For any autonomous vehicle, navigation is a key aspect of design and also a highly
complex task. In general, the key technologies of automatic driving can be divided
into four parts: environmental awareness, behavioral decision, path planning and
motion control. The navigation task can be defined as the combination of three basic

mailto:in.pan@utbm.fr

competencies: localization, path planning and vehicle control. Localization denotes
the robot’s ability to determine its own position and orientation (pose) within a global
reference frame. Path planning defines the computation of an adequate sequence of
motion commands to reach the desired destination from the current robot position.
The potential application areas of the autonomous navigation of mobile robots
include automatic driving, guidance for the blind and disabled, exploration of
Dangerous regions, transporting objects in factory or office environments, collecting
geographical information in unknown terrains like unmanned exploration of a new
planetary surface, etc.

This article will concentrate on one of many navigation methods, which use a
topological map. Firstly, it will present the topological map and navigation stack.
Furthermore, this article will specifically introduce the principle of topological
navigation. This article will also discuss the application in the autonomous vehicle,
the limitations and constraints that might be encountered while using topological
navigation.

Open street map for ROS navigation

Localization and path planning are two of the most important components in
autonomous robots. ROS provides a great foundation for working with maps and
path planning. This project uses the geodata from the OpenStreetMap for the
navigation and we could visualize the osm data using ​rviz​.

OpenStreetMap (OSM) is a collaborative project which aims to create a free to use
and editable map of the world. Different from commercial map distributors like
Google, OSM is public domain and created by volunteers performing systematic
ground surveys with a handheld GPS receiver.

Since its creation in 2004, Openstreetmap has grown to over 2 million registered
users, who can collect data using manual survey, GPS devices, aerial photography,
and other free sources. Rather than the map itself, the data generated by the
OpenStreetMap project is considered its primary output. OSM provides detailed
information paths, buildings and other landmarks, which plays a crucial role in
self-driving car navigation and localization.

http://wiki.ros.org/rviz

 Figure : Map selected from OSM

OSM allows the user to export a map of an selected area in .osm format, the map is
composed by a serie of node, which contain id, location, type etc,.

In order to visualize the data from OSM, we need a ROS node that can read the .xml
file and publish a bunch of markers in rviz. OSM_cartography is an open-source
package that accomplishes just that. for this task, we need realize a transform tree to
make a link between \map and \local_map. Once the .osm file is visualized using
rviz, it looks something like the figure at the next page.

The red, green and purple lines represent different type of pathways, while the blue
lines represent buildings or other structures. If you look very closely, you will find
yellow marks, which are waypoints on a path. This kind of visualization is quite useful
when it comes to localization and path planning.

Figure : OSM map view in RVIZ

Topological map

For behavior-based robots, using topological map to navigate is simpler and more
natural. When we show someone else the way, we use often the instructions such as
“go along this street, turn left at the first intersection, and then enter the third building
on your left” naturally, we also hope that the vehicles or the robots can understand
the instructions like this. Even without a complete map, as long as the robot knows
“intersection” “building”, it is enough to complete the navigation task.

In order to develop an autonomous vehicle able to navigate through environment
composed by streets and highways, it must be assumed that the robot know its
approximate position, environment map and the path to be followed (origin/way
points/destination), in this way, navigation task consists on a predefined path.

In a sense, topological map abstracts the urban environment, it serves as the basis
for the autonomous navigation of intelligent vehicles and provides the paths for
global planning. As we don’t need a very detailed environment map (metric map),
topological maps provide a graph to represent the main elements, a simpler path
representation consist on roads as edges, junctions, parking lots, etc. as nodes, and
these informations are provided by the OpenStreetMap (OSM) city area topological
map.

As the path is predefined, the main objective of navigation is to detect current node
in a topological map and to know which next point should pass by, being useful to
autonomously decide when and how to proceed in order to go straight, turn left or
right.

We consider that topological map is a list of nodes (Way Points) that can be defined
in a YAML format file, the file looks like this:

Navigation

Navigation is a huge challenge we must overcome when designing an autonomous
vehicle. Navigation describes how an autonomous vehicle intelligently moves and
interacts with its environment. There are two main focuses when designing a
navigation system for an autonomous vehicle: path planning and obstacle
avoidance. Navigation function can be described by the following four questions:
Where will I go? This problem is usually done by people or task planners. What is
the best path? This is a question about path planning and is the most concerned
point in navigation problems. Where have I been to? The map is important for the
autonomous vehicle or robot to analysis the environment. Where am I now? In order
to track the path or build a map, the vehicle must know where it is, the so-called
localization. Path planning attempts to generate an intelligent movement scheme for
the vehicle. Obstacle avoidance attempts to account for objects the vehicle may
encounter while traversing its path. This makes it more capable to handle the real
world situations and environments where there are many unknowns. When driving a
car, we not only have to avoid known obstacles, but it also have to avoid unknown
obstacles like wild animals.

a. Navigation stack

The main objective of the Navigation Stack is to move a vehicle from a position A to
a position B, ensuring it won't crash against obstacles, or get lost in the process. The
Navigation Stack is a set of ROS nodes and algorithms which are used to
autonomously move a vehicle from one point to another, avoiding all obstacles the
vehicle could find its way. In order to do this, the Navigation Stack will take the
current location of the vehicle as input, the destination the vehicle wants to go (goal
pose), the Waypoints the vehicle should pass by, the Odometry data(”Odom” topic)
of the Robot (wheel encoders, IMU, GPS...) and data from the sensors. In exchange,
it will output the velocity commands (“cmd_vel” topic) in this form below:

x, y (linear velocity)
z (angular velocity)

 with them the vehicle is controlled to move to the specified position.

Figure : Navigation Stack source package structure

According to the shown diagram, the navigation stack can be divided into three
parts.

move_base​ provides a basic framework, which contains the configuration,
operation, and interaction interfaces of ROS navigation. Its main tasks are as
follows: Maintain a global map, maintain a local map, maintain a global path planner
to complete the global path planning task and maintain a local path planner to
complete the local path planning task.

nav_core​ provides the interfaces of global path planner and local path planner, so
that we could integrate different algorithms with.

carrot_planner​ is the simplest global path planner, it generate a path of straight line
between current point and the target point.

global_planner​ and ​navfn​ are basicly doing the same thing. They are all to realize
the global path planning between the target point and the current point. The are both
integrated with Dijkstra algorithm and A* algorithm.

base_local_planner​ searches through the map data for multiple paths to the target,
uses some evaluation criteria (whether it will hit obstacles, required time, etc.) to
select the optimal path and calculate the required real-time velocity(x,y,z). There are
two local path planning algorithms: Trajectory Rollout and Dynamic Window
Approach (DWA) algorithm. DWA is implemented in the ​dwa_local_planner​.

rotate_recovery​ and ​clear_costmap_recovery,​ both of these packages are
inherited from the recovery_behavior class. They are used when the vehicle finds no

way to go, then moves around and updates the surrounding obstacle information to
see if there is dynamic obstacles move away then find a way to continue.

map server​ give a management of map, which is used to read and write maps and
publish map messages for the subscribers of other function packages.

costmap_2d​ can be seen as an input processor for navigation. Input data could be
very different according to the different sensors. Through the costmap_2d, different
data are processed into a unified format: a grid map, the weights are processed by
probabilistic methods, representing obstacles, unknown and safe areas. The
generated costmap is the planner's input.

fake_localization​ provides an implementation of localization.

robot_pose_ekf​ is mainly modify the vehicle’s mileage value according to the
sensor informations.

amcl​ is used to estimate the location of the vehicle on the map using the odometer
value and the map information.

b. Using OSM for navigation

As mentioned previously, the actual control of vehicle is done by move_base, we can
see in the figure below the inputs and outputs of move_base. To make it work, we
have to build well these inputs and outputs.

Figure : Navigation stack

Necessary inputs:

 Goal : Expected target position on the map.

 Tf : Transform between coordinate systems. (/map → /local map, /map frame →
/odom frame, /odom frame → /base_link frame)

 Odom: Calculate from the left and right wheel speeds of the vehicle a estimation
of a position and velocity.

 LaserScan: Laser sensor information for positioning.

Output:

 Cmd_vel: The Twist message is published on the cmd_vel topic. This message
contains the vehicle’s expected velocity.

move_base provide a service to listen to the nav_msgs::goal, use the global planner
to plan the global path, then sends the global path informations to the local planner.
The local planner combines the surrounding obstacle information (from the costmap
it maintains), global path information, target point information to obtain a best
trajectory, then return the velocity value, send the Twist (geometry_msgs/Twist)
messages to cmd_vel to control the vehicle movement.

We use amcl to get the position of the vehicle in the map. Publishing the map ->
Odom transform and by requesting the transform map -> base_link, we can get the
position.

Application in autonomous vehicules

Autonomous vehicle navigation gains increasing importance in various growing
application areas. Nowadays, autonomous vehicles have basically achieved safe
driving in terms of technology, however, according to the SAE Automation Levels,
most current autonomous cars are still at level 2 or 3, level 3 vehicles can make
informed decisions for themselves such as overtaking slower moving vehicles.
However, unlike the higher rated autonomous vehicles, human override is required
when the machine is unable to execute the task at hand or the system fails.
Today there are already some autonomous vehicles on the road for some specific
uses, some mini shuttle buses has been used in a campus in China. Level 3 vehicles
might be sufficient for these situations: route is fixed, surroundings is simple, it could
be relatively easy to implement. In the future, for the sharing cars or private cars, it
required at least the level 4 vehicles, which are able to intervene themselves if things
go wrong or there is a system failure, these cars are left completely to their own
devices without any human intervention in the vast majority of situations.

There are many good reasons for getting excited about the applications on
autonomous vehicles, they can significantly reduce traffic congestion by searching
the best trajectory according the gathering informations, and by maintaining an exact
distance from the neighbour cars. They can also increase the accessibility for the
disabled and elderly persons. However, autonomous technologies need still to be
improved, there is still a long way to go to build the ultimate autonomous vehicles.

References:

1.移动机器人的导航与路径规划的研究 吕永刚 谢存禧
2.Autonomous car, wikipedia
3.ROS Navigation Stack之概要介绍 https://blog.csdn.net/TurboIan/article/details/79475672
4.ROS Navigation wiki http://wiki.ros.org/navigation
5.​Introduction to AI Robotics, Robin R. Murphy
6.ROS by example, ​Patrick Goebel
7.ROS Navigation Tuning Guide, Kaiyu Zheng
8.Introduction to Navigation using ROS, Giorgio Grisetti

https://dl.acm.org/citation.cfm?id=517685
http://www.pirobot.org/
https://dl.acm.org/citation.cfm?id=517685

